-
Because you always copy my solution,Tran Nhat Duong
-
Trần Nhật Dương 27/06/2017 at 20:28
I don't understand meaning of the post
-
The ratio of 2a to b is: \(\dfrac{7}{3}.2=\dfrac{14}{3}\)
Selected by MathYouLike
-
WhySoSerious 16/08/2017 at 15:20
I found the number that STAR present is \(\overline{STAR}=8712\)
Cause \(RATS\cdot4=STAR=2178\cdot4=8712\)
So the value of S+T+A+R is 8 + 7 + 1 + 2 = 18.
-
Help you solve math 16/08/2017 at 15:58
WE have
I found the number that STAR present is STAR=8712
Cause RATS⋅4=STAR=2178⋅4=8712
So the value of S+T+A+R is 8 + 7 + 1 + 2 = 18.
Answer:18
-
VTK-VangTrangKhuyet 29/08/2017 at 20:58
We have to prove \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
Let it be : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)(1).
We have (1) <=> \(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\), true with all a,b > 0.
Done !
Vương Ngọc Như Quỳnh selected this answer. -
Dao Trong Luan 29/08/2017 at 21:01
We have:
\(\left(a-b\right)^2\ge0\)
=> a2 + b2 \(\ge2ab\)
=> a2 + b2 + 2ab \(\ge2\left(2ab\right)=4ab\)
=> \(\left(a+b\right)^2\ge4ab\)
Because a > 0, b > 0 => a+b > 0
\(\Rightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a}{ab}+\dfrac{b}{ab}\ge\dfrac{4}{a+b}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
So, .......
-
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 14/10/2017 at 20:16
i loved pokemon
-
Draw \(CH\perp AB\).
\(\Delta ABC\) right at C has \(AB=\sqrt{AC^2+BC^2}=\sqrt{12^2+9^2}=15\)
\(AC^2=AH.AB\Rightarrow AH=\dfrac{12^2}{15}=9.6\Rightarrow DH=9.6-5=4.6\)
\(\Delta ACH\) right at H has \(CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-\left(9.6\right)^2}=7.2\)
\(\Delta CDH\) right at H has
\(CD=\sqrt{CH^2+DH^2}=\sqrt{\left(7.2\right)^2+\left(4.6\right)^2}=\sqrt{73}\) (units)
Selected by MathYouLike -
Cậu Bé Ngu Ngơ 15/11/2017 at 13:07
Draw CH⊥ABCH⊥AB.
ΔABCΔABC right at C has AB=√AC2+BC2=√122+92=15AB=AC2+BC2=122+92=15
AC2=AH.AB⇒AH=12215=9.6⇒DH=9.6−5=4.6AC2=AH.AB⇒AH=12215=9.6⇒DH=9.6−5=4.6
ΔACHΔACH right at H has CH=√AC2−AH2=√122−(9.6)2=7.2CH=AC2−AH2=122−(9.6)2=7.2
ΔCDHΔCDH right at H has
CD=√CH2+DH2=√(7.2)2+(4.6)2=√73CD=CH2+DH2=(7.2)2+(4.6)2=73 (units)
-
FC Alan Walker 08/04/2018 at 03:24
We have: \(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^{\text{4}}\)
\(=\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
\(=\left[\left(x^2+5xy+5y^2\right)-y^2\right]\left[\left(x^2+5xy+5y^2\right)+y^2\right]+y^4\)
\(=\left(x^2+5xy+5y^2\right)^2-y^4+y^4\)
\(=\left(x^2+5xy+5y^2\right)^2\)
So A is a square number.
Alone selected this answer. -
¤« 08/04/2018 at 15:05
We have: A=(x+y)(x+2y)(x+3y)(x+4y)+y4
=[(x+y)(x+4y)][(x+2y)(x+3y)]+y4
=(x2+5xy+4y2)(x2+5xy+6y2)+y4
=[(x2+5xy+5y2)−y2][(x2+5xy+5y2)+y2]+y4
=(x2+5xy+5y2)2−y4+y4
=(x2+5xy+5y2)2
So A is a square number.