-
Tell x is the number to find
=> x(x+2) = 783
=> x = 27 or x = -29
But x is a positive => x = 27
Lê Quốc Trần Anh selected this answer. -
FA Liên Quân Garena 08/01/2018 at 21:45
Tell x is the number to find
=> x(x+2) = 783
=> x = 27 or x = -29
But x is a positive => x = 27
-
Asuna Yuuki 04/01/2018 at 22:03
Tell x is the number to find
=> x(x+2) = 783
=> x = 27 or x = -29
But x is a positive => x = 27
-
Nguyễn Thị Thanh Hiền 08/05/2018 at 06:29
The perimeter of the hexagon is: 16 x 6 = 96 (cm)
Because the circumference of the hexagon equal the circumference of the star, the perimeter of the star is 96 cm
Answer: 96cm
Quoc Tran Anh Le Coordinator
05/08/2018 at 03:52
-
Huy Toàn 8A (TL) 05/08/2018 at 13:38
Sum of odd-numbered digits ( - ) Sum of even-numbered digits or vice versa is divisible by 11
We have:
(2 + D + D) - (3 + 6 + 9) is divisible by 11
<=> 2 + 2D - 18 is divisible by 11
<=> 2D - 16 is divisible by 11
<=> 2 (D - 8) is divisible by 11
So Greatest common divisor (2 ; 11) = 1
=> D - 8 is divisible by 11
0 \(\le D\le9\)
=> D = 8
So The answer is : 386,892
Selected by MathYouLike
-
Nguyễn Viết Trung Nhân 23/03/2020 at 09:34
The number of large clips that weigh the same as 12 small clips is:
12 x 2/3 = 8(large clips)
The number of tacks weigh the same amount as 12 small clips is:
8 x 2 = 16(tacks)
-
nguyễn kim tuyen 14/04/2019 at 02:37
2/3 = 4/6
-
Replace x = 2 into the given equations,we have :
\(\left\{{}\begin{matrix}2p+q=91\\p-q=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2p+p-2=91\\q=p-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3p=93\\q=p-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}p=31\\q=29\end{matrix}\right.\)=> pq = 899
Selected by MathYouLike -
FA KAKALOTS 03/02/2018 at 12:42
Replace x = 2 into the given equations,we have :
{2p+q=91p−q=2⇒{2p+p−2=91q=p−2
⇒{3p=93q=p−2⇒{p=31q=29
=> pq = 899
-
london 24/04/2017 at 10:08
\(PO=PM+MO=8+5=13\)
\(PX=PY=\sqrt{PO^2-OX^2}=\sqrt{13^2-5^2}=12\)
\(PX.XO=PO.XH\left(=2.area\left(XPO\right)\right)\)
=> \(XH=\dfrac{PX.XO}{PO}=\dfrac{12.5}{13}=\dfrac{60}{13}\)
\(XY=2.XH=2.\dfrac{60}{13}=\dfrac{120}{13}\)
-
-
The answer is \(\dfrac{120}{13}\),but I don't know the solution.
Is this problem from USC Mathematics Contest 3/12/1994 ?
Visit here : http://www.math.sc.edu/math-contest-1994-answer-key
-
Tina 29/05/2017 at 22:17
a) We have:
\(3\left(2x-1\right)^2\ge0\forall x\)
\(7\left(3y+5\right)^2\ge0\forall y\)
\(\Rightarrow\left\{{}\begin{matrix}3\left(2x-1\right)^2=0\\7\left(3y+5\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(3y+5\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-1=0\\3y+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{5}{3}\end{matrix}\right.\)
Answer: \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{5}{3}\end{matrix}\right.\)
b) \(x^2+y^2-2x+10y+26=0\)
\(\left(x^2-2x+1\right)+\left(y^2+10y+25\right)=0\)
\(\left(x-1\right)^2+\left(y+5\right)^2=0\)
We have:
\(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+5\right)^2\ge0\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)
Answer: \(\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)
-
Nguyễn Việt Hoàng 30/05/2017 at 21:21
We have : 3(2x - 1)2 + 7(3y + 5)2 = 0
<=> 3(4x2 - 1) + 7(9y2 + 25) = 0
<=> 12x2 - 3 + 63y2 + 175 = 0
<=> 12x2 + 63y2 + 172 = 0
<=> 12x2 + 63y2 = -172 (Meaningless)
Because : 12x2 \(\ge0\) ; 63y2 \(\ge0\)
-
Summer Clouds moderators
26/07/2017 at 17:27
-
Searching4You 26/07/2017 at 17:32
\(\dfrac{x^2-3x+2}{x^2+4x+5}=\dfrac{1}{2}\Rightarrow2\left(x^2-3x+2\right)=x^2+4x+5\)
\(\Leftrightarrow2x^2-6x+4=x^2+4x+5\)
\(\Leftrightarrow x^2-10x-1=0\)
=> We have two solutions : \(\left[{}\begin{matrix}x=5+\sqrt{26}\\x=5-\sqrt{26}\end{matrix}\right.\)
Selected by MathYouLike -
FA KAKALOTS 28/01/2018 at 22:13
We have : x2−3x+2x2+4x+5=12
⇒(x2−3x+2).2=x2+4x+5
⇔2x2−6x+4=x2+4x+5
⇔2x2−x2−6x−4x=5−4
⇔x2−10x−1=0
⇔x2−10x+25−26=0
⇔(x−5)2=26
=> x - 5 = √26
=> x = √26+5
-
Searching4You was right
-
Oh, I'm wrong. My solution is: 4.3.2 (not 3.3.2). Thanks Phan Thanh Tinh for your answer.
-
Lê Quốc Trần Anh, I think there are : 4.3.2.1 = 24 (choices) for abcd
My answer is : \(\dfrac{1}{24}=4.1\left(6\right)\%\)
How did you think about the way to find the number of choices for abcd ? I can't understand 3.3.2
-
Call the digits of the mobile device: abcd \(\left(a\ne b\ne c\ne d\right)\) and \(a,b,c,d\in\left\{0;1;2;...;9\right\}\)
So there'll be: \(3.3.2=18\left(ways\right)\)for the number abcd in random order.
So the probability is: \(\dfrac{1}{18}\simeq5,56\%\)