-
london 13/04/2017 at 08:39
Suppose that it takes Alice x hours to go from A to B. Then, it takes Bill x + 2.5 hours to go from B to A. We get that Alice’s speed is d/x and Bill’s speed is d/(x + 2.5), where d is the distance from A to B. Since Alice and Bill met 3 hours after they started walking, we have:
\(3\left(\dfrac{d}{x}+\dfrac{d}{x+2,5}\right)=d\)
\(\Rightarrow x=5\).
So Bill take 5 + 2,5 = 7,5 hours to go from B to A.
-
There are 2 vertices in the left triangle that can connect to 2 vertices in the right triangle. So there are \(2.2=4\left(ways\right)\)
ANSWER: 4 ways.
-
-
Aim Egst 19/07/2017 at 14:22
From \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+3ab(a+b)+b^3+c^3-3abc-3ab(a+b)=0\)
\(\Rightarrow (a+b)^3+c^3-3ab(a+b+c)=0\)
\(\Rightarrow (a+b+c)(a^2+2ab+b^2-ab-ac+c^2)-3ab(a+b+c)=0\)
\(\Rightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0\)
It's right because \(a+b+c=0\)
Selected by MathYouLike -
We have :
a3 + b3 + c3 = 3abc
a3 + b3 + c3 - 3abc = 0
(a3 + 3a2b + 3ab2 + b3) + c3 - 3a2b - 3ab2 - 3abc = 0
(a + b)3 + c3 - 3ab.(a + b + c) = 0
[(a + b) + c].[(a + b)2 - c.(a + b) + c2] - 3ab(a + b + c) = 0
(a + b + c).[a2 + 2ab + b2 - ac - bc + c2] - 3ab(a + b + c) = 0
(a + b + c).[a2 + b2 + c2 - bc - ca + 2ab - 3ab] = 0
(a + b + c).[a2 + b2 + c2 - ab - bc - ca] = 0
That is right , because a + b + c = 0
So a3 + b3 + c3 = 3abc
With a + b + c = 0
Kantai Collection selected this answer. -
If \(a,b,c\in N\) then I can answer it.
\(a+b+c=0\)
=> \(a=b=c=0\).
Because \(\forall x\) in the case \(0^x=0\) and a number multiplies by \(0\) equals to \(0\).
=> \(a^3+b^3+c^3=3abc=0\left(proved\right)\)
-
- There are \(\dfrac{363-3}{10}+1=37\) digit 3 do units
- There are \(\dfrac{330-30}{100}+1=4\) digit 3 do tenth
- There are \(\dfrac{399-300}{1}+1=100\) digit do hundredth
So there are 100 + 4 + 37 = 141 digit 3 appear as part of a page number of this book
Selected by MathYouLike
-
Let x, y be the numbers (x > y). We have :
\(\left\{{}\begin{matrix}x-y=6\\x^2-y^2=24\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-y=6\\\left(x-y\right)\left(x+y\right)=24\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=6\\x+y=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y+6\\2y=-2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)\(\Rightarrow xy=-5\)
So, the answer is -5
Selected by MathYouLike -
Monster girls 29/11/2017 at 15:47
Call the bigger numbers a, the smaller number b
We have: a-b=6 and a+b=24
=> a-b+a+b=6+24
=>2a=30
=>a=30:2
=>a=15
=> 15-b=6
=>b=9
So the products of the two numbers are 15 and 9
-
Help you solve math 31/12/2017 at 08:14
B = \(\dfrac{0,00000025.0,00006}{0,0000000015}\) = \(\dfrac{25.10^{-8}.6.10^{-5}}{15.10^{-10}}\) = \(\dfrac{6.25.10^{-13}}{15.10^{-10}}\) = \(\dfrac{150}{15}.10^{-3}=10.10^{-3}=10^{-2}\)
=> B = \(\dfrac{1}{10^2}\) = 0,01
longia selected this answer. -
FA Liên Quân Garena 01/01/2018 at 10:18
B = 0,00000025.0,000060,0000000015 = 25.10−8.6.10−515.10−10 = 6.25.10−1315.10−10 = 15015.10−3=10.10−3=10−2
=> B = 1102
= 0,01
-
¤« 07/04/2018 at 14:38
i think the title is wrong. It is: 34(AB+AC+BC)<AD+BE+CF<AB+AC+BC
-
I think the title is wrong. It is: \(\dfrac{3}{4}\left(AB+AC+BC\right)< AD+BE+CF< AB+AC+BC\)