-
We have \(\overline{a0b}⋮9\Rightarrow a+0+b\in\left\{9;18;27;36;...\right\}\)
But \(a+0+b\le18\)
So \(a+b=\left\{9;18\right\}\)
We have pair (a;b) = (1;8) , (8;1) , (2;7) , (7;2) , (6;3) , (3;6) , (5;4) , (4;5) , (9;0).
But there is only the pair : (4;5) match the condition \(\overline{a0b}=\overline{ab}\cdot9\).
So the answer of the two digit number \(\overline{ab}\) is 45.
Selected by MathYouLike -
\(\overline{a0b}=\overline{ab}.9\Leftrightarrow100a+b=9\left(10a+b\right)\Leftrightarrow100a+b=90a+9b\)
\(\Leftrightarrow10a=8b\Leftrightarrow5a=4b\Leftrightarrow\dfrac{a}{4}=\dfrac{b}{5}\)
\(b< 10\Rightarrow\dfrac{b}{5}< 2\). Moreover, \(a>0\Rightarrow\dfrac{a}{4}>0\)
So, \(\dfrac{a}{4}=\dfrac{b}{5}=1\Rightarrow a=4;b=5;\overline{ab}=45\)
-
Vũ Mạnh Hùng 02/12/2017 at 20:50
it is 36 letters
me
-
Shirayuki Akagami 02/12/2017 at 13:08
I do not know ???
-
Alone 07/04/2018 at 08:27
\(\left(2x_1-5y_1\right)^{2018}\ge0;\left(2x_2-5y_2\right)^{2018}\ge0;.......;\left(2x_{2019}-5y_{2019}\right)^{2018}\ge0\)
\(\Rightarrow\left(2x_1-5y_1\right)^{2018}+\left(2x_2-5y_2\right)^{2018}+......+\left(2x_{2019}-5y_{2019}\right)^{2018}\ge0\)
Because \(\left(2x_1-5y_1\right)^{2018}+\left(2x_2-5y_2\right)^{2018}+..........+\left(2x_{2019}-5y_{2019}\right)^{2018}\le0\)
\(\Rightarrow\left(2x_1-5y_1\right)^{2018}+\left(2x_2-5y_2\right)^{2018}+......+\left(2x_{2019}-5y_{2019}\right)^{2018}=0\)
\(\Rightarrow2x_1=5y_1;2x_2=5y_2;..........;2x_{2019}=5y_{2019}\)
\(\Rightarrow\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}=..........=\dfrac{x_{2019}}{y_{2019}}=\dfrac{5}{2}=\dfrac{x_1+x_2+.......+x_{2019}}{y_1+y_2+.......+y_{2019}}\)
Dao Trong Luan selected this answer. -
¤« 07/04/2018 at 14:38
(2x1−5y1)2018≥0;(2x2−5y2)2018≥0;.......;(2x2019−5y2019)2018≥0
⇒(2x1−5y1)2018+(2x2−5y2)2018+......+(2x2019−5y2019)2018≥0
Because (2x1−5y1)2018+(2x2−5y2)2018+..........+(2x2019−5y2019)2018≤0
⇒(2x1−5y1)2018+(2x2−5y2)2018+......+(2x2019−5y2019)2018=0
⇒2x1=5y1;2x2=5y2;..........;2x2019=5y2019
⇒x1y1=x2y2=..........=x2019y2019=52=x1+x2+.......+x2019y1+y2+.......+y2019
-
Huỳnh Anh Phương 08/07/2018 at 03:18
@3@=6x3x2x1=36
-
Huỳnh Anh Phương 09/07/2018 at 03:46
that be answered !
-
Cristiano Ronaldo 03/08/2018 at 14:03
How your father feel???
Answer: he happy too
Hello selected this answer.
Quoc Tran Anh Le Coordinator
31/08/2018 at 07:03
-
John 12/04/2017 at 17:24
Because the tank doubles everr minute, the tank is half full in 9 minutes.
-
Trần Nhật Dương 26/06/2017 at 15:32
Draw AE // BC.
The quadrilateral ABCE has AB // CE ; AE // BC,so it's a parallelogram
⇒AB=CE;ˆE1=ˆB=1250⇒ˆE2=1800−ˆE1=550⇒AB=CE;E1^=B^=1250⇒E2^=1800−E1^=550
ˆE1E1^is the exterior angle of ΔADEΔADE ⇒ˆA1+ˆD=ˆE1⇒A1^+D^=E1^
⇒ˆA1=1250−700=550⇒A1^=1250−700=550
ΔADEΔADE has ˆA1=ˆE2=550A1^=E2^=550,so ΔADEΔADE isosceles at D
⇒AD=DE⇒CD=CE+DE=AB+AD⇒AD=DE⇒CD=CE+DE=AB+AD
P/S : The question must be changed into ˆD=700D^=700or ˆB=127.50
-
Draw AE // BC.
The quadrilateral ABCE has AB // CE ; AE // BC,so it's a parallelogram
\(\Rightarrow AB=CE;\widehat{E_1}=\widehat{B}=125^0\Rightarrow\widehat{E_2}=180^0-\widehat{E_1}=55^0\)
\(\widehat{E_1}\)is the exterior angle of \(\Delta ADE\) \(\Rightarrow\widehat{A_1}+\widehat{D}=\widehat{E_1}\)
\(\Rightarrow\widehat{A_1}=125^0-70^0=55^0\)
\(\Delta ADE\) has \(\widehat{A_1}=\widehat{E_2}=55^0\),so \(\Delta ADE\) isosceles at D
\(\Rightarrow AD=DE\Rightarrow CD=CE+DE=AB+AD\)
P/S : The question must be changed into \(\widehat{D}=70^0\)or \(\widehat{B}=127.5^0\)
-
\(1-5\cdot2+10\cdot2^2-10\cdot2^3+5\cdot2^4-2^5\)
\(=1-5\cdot2+5\cdot2^3-5\cdot2^4+5\cdot2^4-2^5\)
\(=1-5\cdot2+5\cdot2^3-2^5\)
\(=1-5\cdot\left(2-2^3\right)-2^5\)
\(=1-5.\left(-6\right)-32\)
\(=1+30-32=-1\)
Lê Quốc Trần Anh selected this answer. -
Help you solve math 16/08/2017 at 15:36
Answer:1−5⋅2+10⋅22−10⋅23+5⋅24−251−5⋅2+10⋅22−10⋅23+5⋅24−25
=1−5⋅2+5⋅23−5⋅24+5⋅24−25=1−5⋅2+5⋅23−5⋅24+5⋅24−25
=1−5⋅2+5⋅23−25=1−5⋅2+5⋅23−25
=1−5⋅(2−23)−25=1−5⋅(2−23)−25
=1−5.(−6)−32=1−5.(−6)−32
=1+30−32=−1