MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 459 )
  • See question detail

    \(\dfrac{2^{10}\cdot5^6\cdot30^5}{4^2\cdot5^9\cdot60^2}=\dfrac{4^5\cdot5^6\cdot30^5}{4^2\cdot5^9\cdot2^2\cdot30^2}=\dfrac{4^5\cdot5^6\cdot30^5}{4^3\cdot5^9\cdot30^2}=4^2\cdot5^{-3}\cdot30^3=3456\)

  • See question detail

    x+2y = 8 and 5x+2y = 48

    => \(\left(5x+2y\right)-\left(x+2y\right)=48-8=40\)

    => 4x = 40 => x = 10

    => 10 - 2y = 0 => 2y = 10 => y = 5

    So the answer is: \(\dfrac{10+5}{2}=\dfrac{15}{2}\)

  • See question detail

    average = 1 --> sum 1st,3rd add to 2 --> 1 + 1, 2 + 0 --> 2 numbers
    average = 2 --> sum add to 4 --> 1 + 3, 2 + 2, 3 + 1, 4 + 0 --> 4 numbers
    average = 3 --> sum add to 6 --> 1 + 5, 2 + 4, 3 + 3, 4 + 2, 5 + 1, 6 + 0 --> 6
    average = 4 --> sum add to 8 --> 1 + 7, 2 + 6, 3 + 5, 4 + 4, 5 + 3, 6 + 2,............................ 7 + 1, 8 + 0 --> 8 numbers
    average = 5 --> sum add to 10 --> 1 + 9, 2 + 8, 3 + 7, 4 + 6, 5 + 5, 6 + 4,............................ 7 + 3, 8 + 2, 9 + 1 --> 9
    ave = 6 --> sum add to 12 --> 3 + 9, 4 + 8, 5 + 7, 6 + 6, 7 + 5, 8 + 4,
    ............................ 9 + 3 --> 7
    ave = 7 --> sum add to 14 --> 5 + 9, 6 + 8, 7 + 7, 8 + 6, 9 + 5 --> 5

    ave = 8 --> sum add to 16 --> 7 + 9, 8 + 8, 9 + 7 --> 3 numbers
    ave = 9 --> sum add to 18 --> 9 + 9 --> 1 number
    2 + 4 + 6 + 8 + 9 + 7 + 5 + 3 + 1
    appears to be the sum of the digits from 1 to 9
    sum digits = n(n+1)/2 = 9(10)/2 = 90/2 = 45 numbers
    111, 210
    123, 222, 321, 420
    135, 234, 333, 432, 531, 630
    147, 246, 345, 444, 543, 642, 741, 840
    159, 258, 357, 456, 555, 654, 753, 852, 951
    369, 468, 567, 666, 765, 864, 963
    579, 678, 777, 876, 975
    789, 888, 987
    999

    Answer: 45 numbers
     

  • See question detail

    A B C D H

    Put H is intersection of AB and CD

    \(\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}AC^2=HC^2+AH^2\\AD^2=HD^2+AH^2\end{matrix}\right.\Rightarrow AC^2-AD^2=\left(HC^2+AH^2\right)-\left(HD^2+AH^2\right)=HC^2-HD^2\\\left\{{}\begin{matrix}BC^2=HC^2+BH^2\\BD^2=HD^2+BH^2\end{matrix}\right.\Rightarrow BC^2-BD^2=\left(HC^2+BH^2\right)-\left(HD^2+BH^2\right)=HC^2-HD^2\end{matrix}\right.\)

    => AC2 - AD2 = BC2 - BD2

  • See question detail

    1/

    We have:

    \(\dfrac{2011}{1.11}+\dfrac{2011}{2.12}+...+\dfrac{2011}{100.110}=2011\left(\dfrac{1}{1.11}+\dfrac{1}{2.12}+...+\dfrac{1}{100.110}\right)\)

    \(=2011\cdot\dfrac{1}{10}\left(\dfrac{11-1}{1.11}+\dfrac{12-2}{2.12}+...+\dfrac{110-100}{100.110}\right)\)

    \(=\dfrac{2011}{10}\left(1-\dfrac{1}{11}+\dfrac{1}{2}-\dfrac{1}{12}+...+\dfrac{1}{100}-\dfrac{1}{110}\right)\)

    \(=\dfrac{2011}{10}\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}-\dfrac{1}{11}-\dfrac{1}{12}-...-\dfrac{1}{110}\right)\)

    \(=\dfrac{2011}{10}\left(1+\dfrac{1}{2}+...+\dfrac{1}{10}-\dfrac{1}{101}-\dfrac{1}{102}-...-\dfrac{1}{110}\right)\)

    \(\dfrac{2012}{1.101}+\dfrac{2012}{2.102}+...+\dfrac{2012}{10.110}=2012\left(\dfrac{1}{1.101}+\dfrac{1}{2.102}+...+\dfrac{1}{10.110}\right)\)

    \(=2012\cdot\dfrac{1}{100}\left(\dfrac{101-1}{1.101}+\dfrac{102-2}{2.102}+...+\dfrac{110-10}{10.110}\right)\)

    \(=\dfrac{2012}{100}\left(1-\dfrac{1}{101}+\dfrac{1}{2}-\dfrac{1}{102}+...+\dfrac{1}{10}-\dfrac{1}{110}\right)\)

    \(=\dfrac{2012}{100}\left(1+\dfrac{1}{2}+...+\dfrac{1}{10}-\dfrac{1}{101}-\dfrac{1}{102}-...-\dfrac{1}{110}\right)\)

    \(\Rightarrow\dfrac{2011}{10}\left(1+\dfrac{1}{2}+...+\dfrac{1}{10}-\dfrac{1}{101}-\dfrac{1}{102}-...-\dfrac{1}{110}\right)x=\dfrac{2012}{100}\left(1+\dfrac{1}{2}+...+\dfrac{1}{10}-\dfrac{1}{101}-\dfrac{1}{102}-...-\dfrac{1}{110}\right)\)

    \(\Rightarrow\dfrac{2011}{10}x=\dfrac{2012}{100}\Leftrightarrow x=\dfrac{1006}{10055}\)

  • See question detail

    The distance the trip fly is:

    450.2,5 = 1125 [mi]

    The speed of the original headwind is:

    1125 : 3 = 375 [mi/h]

    Answer: 375 miles/h

  • See question detail

    So the answer is:

    |15-2| = |2-15| = 13

    ||8-3| = |3-8| = 5

    So the answer is 13 or 5

  • See question detail

    Tell those numbers are a,b

    => a+b = 11 and ab = 24

    => ab - a - b = 24-11 = 13

    => a(b-1) - b + 1 = 14

    => a(b-1) - (b-1) = 14

    => (a-1)(b-1) = 14

    We have table:

    a-1 1 14 2 7
    b-1 14 1 7 2
    a 2 15 3 8
    b 15 2 8 3

    So (a,b) = (2,15); (15,2); (3,8); (8,3)

  • See question detail

    1st = 1.3

    2nd = 2.3

    3rd = 3.3

    ............

    => 99th = 99.3 = 297

  • See question detail

    The sum time to Nathan ran 2,5 miles is:

    2,5.7'36'' = \(2,5\cdot\dfrac{19}{150}=19'\)

    The sum time to Nathan run 5 miles is:

    5.7'24'' = \(5\cdot\dfrac{37}{300}=37'\)

    So the last time to Nathan run last 2,5 miles is:

    \(37'-19'=18'\)

    So his pace be for the next 2,5 miles is:

    \(\dfrac{18'}{2,5}=7'12''\)

    So his pace be for the next 2,5 miles is 7 minutes 12 seconds

  • See question detail

    \(\widehat{CAB}=180^o-90^o-30^o=60^o\)

    \(tan\widehat{CAB}=\dfrac{BC}{CA}\)

    \(\Leftrightarrow tan60^o=\dfrac{9}{CA}\Leftrightarrow CA=\dfrac{9}{\sqrt{3}}=3\sqrt{3}\) cm

    \(\angle CAD=\dfrac{60^o}{2}=30^o\Leftrightarrow\angle ADC=180^o-90^o-30^o=60^o\)

    \(tan\angle ADC=\dfrac{CA}{CD}\)

    \(\Leftrightarrow tan60^o=\dfrac{3\sqrt{3}}{CD}\)

    \(\Leftrightarrow\sqrt{3}=\dfrac{3\sqrt{3}}{CD}\Leftrightarrow CD=3cm\)

  • See question detail

    \(\left\{{}\begin{matrix}\dfrac{x}{y}=2\\x=3z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y\\x=3z\end{matrix}\right.\Leftrightarrow x=2y=3z\)

    \(\Rightarrow4x=8y=12z=10\)

    \(\Rightarrow x+y+z=\dfrac{10}{4}+\dfrac{10}{8}+\dfrac{10}{12}=\dfrac{55}{12}\)

  • See question detail

    \(3^{17}\cdot7^{23}=\left(3^4\right)^4\cdot3\cdot\left(7^4\right)^5\cdot7^3=...1\cdot3\cdot...1\cdot343=...9\)

    So the digits in the units of 317 x 723 is 9

  • See question detail

    Draw \(CH\perp AB\)

    Connected AC

    A B C D H

    \(\left\{{}\begin{matrix}DA\perp AB\\CH\perp AB\end{matrix}\right.\)=> DA // CH

    => \(\angle HCD+\angle ADC=180^o\) [2 angles in the same side]

    But \(\angle ADC=120^o\Rightarrow\angle HCD=60^o\Leftrightarrow\angle BCH=120^o-60^o=60^o\)

    \(\angle BCH=60^o\Rightarrow\angle HBC=90^o-60^o=30^o\)

    We have:

    tan \(\angle HBC=\dfrac{HC}{BC}\)

    \(\Rightarrow HC=tan30^o\cdot8=\dfrac{\sqrt{3}}{3}\cdot8=\dfrac{8\sqrt{3}}{3}\left(units\right)\)

    The same, we have:

    tan \(\angle HCB=\dfrac{HB}{BC}\)

    \(\Rightarrow HB=tan60^o\cdot8=\sqrt{3}\cdot8=8\sqrt{3}\left(units\right)\)

    \(\Rightarrow S_{BHC}=\dfrac{\dfrac{8\sqrt{3}}{3}\cdot8\sqrt{3}}{2}=32\left(units^2\right)\)

  • See question detail

    We have: 

    1113 = 1367631 have 7 digits, remove

    2223 = 10941048 , remove

    3333 = 36926037, satisfy

    A > 3 => \(\left(AAA\right)^3=\overline{X...........}\) with:

    * X > 7 when (AAA)3 have 7 digits

    * X < 9 when (AAA)3 have 8 digits 

    So A = 3

  • See question detail

    3 dozen oranges = 36 oranges

    So the answer is: \(\dfrac{90}{4}\cdot36=810\) [cents]

  • See question detail

    \(f\left(g\left(-3\right)\right)=f\left(-3\cdot2+4\right)=f\left(-2\right)=\left(-2\right)^2-2=2\)

  • See question detail

    The number of marbles of Mac is:

    25.20% = 5 [red marbles]

    The number of marbles of Thayer is:

    \(20.\left(100\%-75\%\right)=5\) [marbles]

    So the answer is: 5 - 5 = 0 [marble]

  • See question detail

    I never have studied inequality Co-si yet. So can you give me different cases? 

    P/s: I am grade 7 bucminh

  • See question detail

    Tell the commission of Mr. Jones and Mr. Smith  is a and b

    a = 3% widgets

    b = 5% widgets

    => a/b = 3/5

    => The answer is: 500/5.3 = 300 widgets

  • First
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM