MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 459 )
  • See question detail

    Put \(x-y=a\)

    \(\Rightarrow\dfrac{x-y+y-z}{y-z}=\dfrac{a+\left(y-z\right)}{y-z}=\dfrac{a}{y-z}+\dfrac{y-z}{y-z}=\dfrac{x-y}{y-z}+1\)

    But \(\dfrac{x-y}{z-y}+\dfrac{x-y}{y-z}=0\)

    \(\Rightarrow\dfrac{x-y}{y-z}+1=2+1=3\)

  • See question detail

    We easy see the diagonal of the square is diameter of smaller circle.

    => The diagonal of the square is: 4.2 = 8 [in]

    => The edge of the square is: \(\dfrac{8}{\sqrt{2}}=4\sqrt{2}\) [in]

    => The area of square is: \(\left(4\sqrt{2}\right)^2=32\left(in^2\right)\)

    The area of smaller square is: 42.3,14 = 50,24 [in2]

    The area of bigger square is: 82.3,14 = 200,96 [in2]

    => The total area of the shaded regions is:

    \(\left(200,96-50,24\right)+32=182,72\left(in^2\right)\)

    \(182,72\approx58,16\pi\)

    So the answer is 58,16\(\pi\)

  • See question detail

    Consider triangle ABC right at B

    => tan \(\widehat{ACB}\) = \(\dfrac{AB}{BC}\)

    \(\Rightarrow BC=\dfrac{AB}{tan\widehat{ACB}}=\dfrac{CD}{tan30^o}=\dfrac{40}{\dfrac{\sqrt{3}}{3}}=40\sqrt{3}=69,28\)

    \(\Rightarrow S_{ABCD}=BC\cdot CD=69,28\cdot40=2771,28\left(mm^2\right)\)

  • See question detail

    Let A,B respectively with first and second bike's profit 

    So we have:

    30%A + 50%B = 45%(A+B)

    \(\Rightarrow\dfrac{30}{100}A+\dfrac{50}{100}B=\dfrac{45}{100}\text{(A+B)}\)

    \(\Rightarrow\dfrac{30A}{100}+\dfrac{50B}{100}=\dfrac{45\text{(A+B)}}{100}\)

    \(\Rightarrow30A+50B=45\text{(A+B)}\)

    \(\Rightarrow30A+50B=45A+45B\)

    \(\Rightarrow50B-45B=45A-30A\)

    \(\Rightarrow5B=15A\)

    \(\Rightarrow B=3A\)

    \(\Rightarrow\dfrac{A}{B}=\dfrac{1}{3}\)

    So the ratio of his cost for the first bike to his cost for the second bike is \(\dfrac{1}{3}\)

  • See question detail

    a quitch + 2 gritches = 20 points

    2 quitches + a gritch = 25 points

    => 3 quitches + 3 gritches = 20 + 25 = 45 points

    => a quitch + a gritch = 45/3 = 15 points

    => each gritch worth: 20 - 15 = 5 points

  • See question detail

    40% of 80 is: 40%.80 = 32

    32% of 75 is: 32%.75 = 24

    So the positive differnce between 40% of 80 and 32% of 75 is:

    32 - 24 = 8

    So 75% of it is:

    8.75% = 6

  • See question detail

    Minute hand was runned 30'

    => Location of minute hand at number 6 and equal 1/2 circle

    Now location of hour hand at number 3 plus 1/2 distance from number 3 to number 4

    => Location of hour hand equal \(\dfrac{1}{12}\cdot3+\dfrac{1}{2}\cdot\dfrac{1}{12}=\dfrac{7}{24}\left(circle\right)\)

    So the difference of minute hand and hour hand is: \(\dfrac{1}{2}-\dfrac{7}{24}=\dfrac{5}{24}\left(circle-of-clock\right)\)

    A circle of clock = 360o 

    => \(\dfrac{5}{24}-circle-of-clock=360^o\cdot\dfrac{5}{24}=75^o\)

    So the measure of the smaller angle formed by the minute hand and the hour hand of a clock at 3:30 is 75o

  • See question detail

    I redraw this picture

    A B C D M N P Q 20 12

    If this two squares don't overlap, the sum their length is:

    12 + 12 = 24 [units]

    So the new length of rectange lost:

    24 - 20 = 4 [units]

    => MN = PQ = 4

    => AM = BN = DP = CQ = \(\dfrac{20-4}{2}=8\)

    So the area of \(\Delta BCQ\) is:

    \(\dfrac{12\cdot8}{2}=48\left(units^2\right)\)

  • See question detail

    If this person start go:

    - At first door, he/she can exit at 6 rest doors 

    - At second door, he/she can exit at 5 rest doors 

    - At third door, he/she can exit at 4 rest doors 

    - At fourth door, he/she can exit at 3 rest doors 

    - At fifth door, he/she can exit at 2 rest doors 

    - At sixth door, he/she can exit at 1 rest doors 

    - And at last door, he/she can exit at 0 rest doors 

    So this person will have:

    6 + 5 + 4 + 3 + 2 + 1 + 0 = 21 [ways]

  • See question detail

    C is the midpoint of AD

    \(\Rightarrow AC=CD=\dfrac{AD}{2}=5\left(unit\right)\)

    \(\Rightarrow S_{\Delta CDE}=\dfrac{1}{2}\cdot CE\cdot5=30\left(units^2\right)\)

    \(\Rightarrow CE=30\div5\div\dfrac{1}{2}=12\left(units\right)\)

    \(\Rightarrow BC=\dfrac{2}{3}\cdot12=8\left(units\right)\)

    \(\Delta ACB\) has \(\widehat{ACB}=\widehat{ECD}=90^o\left(\text{two opposite top angles}\right)\) 

    => \(\Delta ACB\) right at C

    => \(AB=\sqrt{8^2+5^2}=\sqrt{89}\left(units\right)\)

    So AB = \(\sqrt{89}\) units

  • See question detail

    Tell the number to find is \(\overline{ab0}\)

    \(\Rightarrow\left\{{}\begin{matrix}a+b=12\\\overline{ba0}-\overline{ab0}=540\end{matrix}\right.;a< b\)because \(\overline{ba0}>\overline{ab0}\)

    => \(\left(100b+10a\right)-\left(100a+10b\right)=540\)

    => 100b + 10a - 100a - 10b = 540

    => 90b - 90a = 540

    \(\Rightarrow90\left(b-a\right)=540\)

    \(\Rightarrow b-a=6\)

    \(So-\left\{{}\begin{matrix}a=\dfrac{12-6}{2}=3\\b=\dfrac{12+6}{2}=9\end{matrix}\right.\)

    So the original number is 390

  • See question detail

    A B C M H P

    Paint \(MP\perp AC\) at P.

    Consider two right-triangles: \(\Delta HAM-and-\Delta PAM\), we have:

    - AM is the common edge \(\left(\text{hypothesis}\right)\)

    - \(\widehat{HAM}=\widehat{MAP}-\left(\text{hypothesis}\right)\)

    => \(\Delta HAM=\Delta PAM-\left(\text{hypotenuse - acute angle}\right)\)

    => HM = PM

    Consider two right-triangles: \(\Delta ABH-and-\Delta AMH\), we have:

    - AH is the common edge \(\left(\text{hypothesis}\right)\)

    - \(\widehat{BAH}=\widehat{MAH}\left(\text{hypothesis}\right)\)

    => \(\Delta ABH=\Delta AMH\left(\text{hypotenuse - acute angle}\right)\)

    => BH = MH

    \(\Rightarrow BM=MH=\dfrac{1}{2}BC=\dfrac{1}{2}CM\)

    \(\Delta MPC\) right have: \(MI=\dfrac{1}{2}CM\)

    \(\Rightarrow\widehat{C}=30^o\Rightarrow\widehat{HAC}=60^o\Rightarrow\widehat{BAC}=\dfrac{3}{2}\widehat{HAC}=90^o\)

    So \(\left[{}\begin{matrix}\widehat{A}=90^o\\\widehat{B}=60^o\\\widehat{C}=30^o\end{matrix}\right.\)

  • See question detail

    Put Sn = 4n + 15n - 10

    With n = 1, S1 = 41 + 15.1 - 10 = 9 ⋮ 9

    Suppose n = k \(\ge1\), so Sk = 4k + 15k - 10 ⋮ 9

    So we must prove that: Sk+1 ⋮ 9

    We have: Sk+1 = 4k+1 + 15(k+1) - 10

                             = 4(4k + 15k - 10) - 45k + 55 - 10

                             =  4Sk - 9(5k - 5)

    But Sk ⋮ 9 => 4Sk ⋮ 9. The other side, 9(5k - 5) ⋮ 9

    So Sk+1⋮ 9

    So 4n + 15n - 10 ⋮ 9

    Done

  • See question detail

    a,

    \(a^2-a=a\left(a-1\right)\)

    \(\left[{}\begin{matrix}a⋮2\Rightarrow a\left(a-1\right)⋮2\Rightarrow a^2-a⋮2\\a⋮̸2\Rightarrow a-1⋮2\Rightarrow a\left(a-1\right)⋮2\Rightarrow a^2-a⋮2\end{matrix}\right.\)

    So a2 - a⋮2

    \(a^3-a=a\left(a^2-1\right)\)

    \(\left[{}\begin{matrix}a⋮3\Rightarrow a\left(a^2-1\right)⋮3\Rightarrow a^3-a⋮3\\a⋮3\Rightarrow a^2\equiv1\left(mod3\right)\Rightarrow\left(a^2-1\right)⋮3\Rightarrow a\left(a^2-1\right)⋮3\Rightarrow a^3-a⋮3\end{matrix}\right.\)So a3 - a⋮3

    \(a^4-a=a\left(a^3-1\right)=a\left(a-1\right)\left(a^2+a+1\right)=2k\cdot\left[a\left(a+1\right)+1\right]=2k\left(2h+1\right)=4kh+2k\)So \(a^4-a⋮4\) when a = 4k+1 means is don't always

    b, 

    \(a^3-a⋮3\left(proof-on\right)\)

    \(a^3-a=a\left(a^2-1\right)\)

    \(\left[{}\begin{matrix}a⋮2\Rightarrow a\left(a^2-1\right)⋮2\Leftrightarrow a^3-a⋮2\\a⋮̸2\Rightarrow a^2⋮̸2\Rightarrow\left(a^2-1\right)⋮2\Rightarrow a\left(a^2-1\right)⋮2\Leftrightarrow a^3-a⋮2\end{matrix}\right.\)

    So a3 -a⋮2

    But \(\left(2,3\right)=1\Rightarrow a^3-a⋮6\)

    a3 - 7a = a3 - a - 6a = \(\left(a^3-a\right)-6a=6k-6a=6\left(k-a\right)⋮6\) - Because a3-a⋮6

    So a3-7a ⋮6

    \(a^3+11a=\left(a^3-a\right)+12a=6k+12a=6\left(k+2a\right)⋮6\)

    So a3+11a ⋮ 6

  • See question detail

    \(A=1\cdot2+2\cdot3+3\cdot4+...+n\left(n+1\right)\)

    \(3A=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+3n\left(n+1\right)\)

    \(=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)\(=1\cdot2\cdot3-0\cdot1\cdot2+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)\(=n\left(n+1\right)\left(n+2\right)\)

    \(\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

  • See question detail

    There are \(\dfrac{103-3}{4}+1=26\) numbers in this series

    So their sum are: \(\dfrac{26}{2}\left(103+3\right)=1378\)

  • See question detail

    \(\Delta ABC\) has \(\widehat{A}=60^o\Rightarrow\widehat{B}+\widehat{C}=120^o\)

    and \(\dfrac{\widehat{B}}{3}=\widehat{C}\Rightarrow\widehat{B}=3\cdot\widehat{C}\Rightarrow\widehat{B}+\widehat{C}=3\cdot\widehat{C}+\widehat{C}=4\cdot\widehat{C}=120^o\)

    \(\Rightarrow\widehat{C}=\dfrac{120^o}{4}=30^o\Leftrightarrow\widehat{B}=120^o-30^o=90^o\)

    So \(\left\{{}\begin{matrix}\widehat{B}=90^o\\\widehat{C}=30^o\end{matrix}\right.\)

  • See question detail

    The length of the insect viewed under this magnifying glass is:

    4.3 = 12 [cm]

  • See question detail

    The volume of rectangular prism measuring is:

    4.3.3 = 36 [cm3]

    So there are \(\dfrac{36}{0,5^3}=288\) cubes are needed to completely fill this rectangular prism measuring

  • See question detail

    The circumference : \(r\cdot2\cdot3,14\left(unit\right)\)

    The area: \(r^2\cdot3,14\left(square-unit\right)\)

    So to the circumference is the same numerical as area, the radius must equal 2 unit

    Done 

  • First
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM