MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 459 )
  • See question detail

    \(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)

    \(=4a^2b^2-\left(a^4+2a^2b^2+b^4\right)+\left(2b^2c^2+2c^2a^2\right)-c^4\)

    \(=\left(2ab\right)^2-\left(a^2+b^2\right)^2+2c^2\left(a^2+b^2\right)-c^4\)

    \(=\left(2ab\right)^2-\left[\left(a^2+b^2\right)^2-2c^2\left(a^2+b^2\right)+c^4\right]\)

    \(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)

    \(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

    \(=\left[\left(a+b\right)^2-c^2\right]\left[-\left(a^2-b^2\right)+c^2\right]\)

    \(=\left(a+b-c\right)\left(a+b+c\right)\left(c-a+b\right)\left(a+c-b\right)\)

    Because a,b,c are 3 edges of a triangle, so

    a+b > c => a+b - c > 0

    a+c > b => a+c - b > 0

    a,b,c > 0 => a+b+c > 0

    b+c > a => c-a+b > 0

    So \(\left(a+b-c\right)\left(a+b+c\right)\left(c-a+b\right)\left(a+c-b\right)>0\)

    So \(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)

  • See question detail

    x3 + y3 + z3 = x + y + z + 2011

    => x3 + y3 + z3 - x - y - z = 2011

    => (x3 - x) + (y3 - y) + (z3 - z) = 2011

    => x(x2 - 1) + y(y2 - 1) + z(z2 - 1) = 2011

    => x(x-1)(x+1) + y(y-1)(y+1) + z(z-1)(z+1) = 2011

    But we have:

    x(x-1)(x+1); y(y-1)(y+1) and z(z-1)(z+1) are the product of three consecutive natural numbers so divisible by 3

    We can prove that a simple way:

    - x \(⋮3\) => x(x-1)(x+1) divisible by 3

    - x divide 3 residuals 1 => x - 1divisible by 3

    - x divide 3 residuals 2 => x + 1 divisible by 3

    So x(x-1)(x+1) divisible by 3

    So we have:

    x(x-1)(x+1) + y(y-1)(y+1) + z(z-1)(z+1) \(⋮3\)

    But not divisible by 3

    => There are no integer x,y,z satisfactory 

  • See question detail

    \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

    \(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=3^2\)

    \(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=9\)

    \(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2\left(a+b+c\right)}{abc}=9\)

    \(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2abc}{abc}=9\)

    \(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=9\)

    \(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=7\)

  • See question detail

    \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=\left(a-b+b-c\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-b+b-c\right)+\left(c-a\right)^3\)

    \(=\left(a-c\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)-\left(a-c\right)^3=-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

    \(\Rightarrow-3\left(a-b\right)\left(b-c\right)\left(c-a\right)=210\)

    \(\Rightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)=-70\)

    \(\Rightarrow\left|a-b\right|\cdot\left|b-c\right|\cdot\left|c-a\right|=70=2\cdot5\cdot7\)

    But a,b,c are integer => \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|=2+5+7=14\)

  • See question detail

    \(M=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

    \(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

    \(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

    \(=\left(x^2+5x\right)^2-36\ge-36\)

    => The minimum of M is -36 when x = 0 or x = -5

  • See question detail

    \(1=\dfrac{1\cdot2}{2}\)

    \(3=\dfrac{2\cdot3}{2}\)

    \(6=\dfrac{3\cdot4}{2}\)

    ...............

    => \(2016^{th}=\dfrac{2016\cdot2017}{2}=2033136\)

  • See question detail

    \(\overline{ab}+\overline{ba}=100\)

    \(\Rightarrow10a+b+10b+a=100\)

    \(\Rightarrow11a+11b=100\)

    \(\Rightarrow11\left(a+b\right)=100\)

    \(\Rightarrow a+b=\dfrac{100}{11}\)

    But x \(\in N\)* and \(y\in N\)

    => Don't have a,b satisfactory 

  • See question detail

    ab + ba = 100

    <=> 2.a.b = 100

    <=> ab = 50

    So ab = 50

  • See question detail

    Additional: This is a learning web, not a web devoted to curse. Ask the Admin to delete the spam question, in Vietnamese. Offer to deduct points or lock the fraudulent account that Alone mentioned above. Thank you sincerely.

  • See question detail

    4 > 3 => 45777 > 35777

    And 35777 > 35674

    ==> 45777 > 35674

  • See question detail

    a.

    \(x^2-2y^2=xy\)

    \(\Leftrightarrow x^2-2y^2-xy=0\)

    \(\Leftrightarrow\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)

    \(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

    \(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=0\)

    \(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

    But \(x+y\ne0\)

    \(\Rightarrow x-2y=0\Leftrightarrow x=2y\)

    \(\Rightarrow P=\dfrac{x-y}{x+y}=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

  • See question detail

    I edited the subject

    \(x^3-x^2-4x^2+8x-4\)

    \(=x^2\left(x-1\right)-\left(4x^2-8x+4\right)\)

    \(=x^2\left(x-1\right)-\left[\left(2x\right)^2-2\cdot2x\cdot2+2^2\right]\)

    \(=x^2\left(x-1\right)-\left(2x-2\right)^2\)

    \(=x^2\left(x-1\right)-4\left(x-1\right)^2\)

    \(=\left(x-1\right)\left[x^2-4\left(x-1\right)\right]\)

  • See question detail

    Oh no,

    Because (−1)⋅(−2)⋅(−3)⋅...⋅(−2017) = − 2017!

    => (−1)⋅(−2)⋅(−3)⋅...⋅(−2017) < 0

  • See question detail

    \(\left(-1\right)\cdot\left(-2\right)\cdot\left(-3\right)\cdot...\cdot\left(-2017\right)=-2017\text{!}\)

  • See question detail

    Tell this number is a

    if a = 999 => (a-3000).3 = -6003

    if a = 998 => (a-3000).3 = -6006

    => Max A is Max (a-3000).3 

    So Melinda can get the largest number when he chooses number 999

    => This number is: -6003

  • See question detail

    second term is: 22 - 3 = 1

    3rd term is: 12 - 3 = -2

    4th term is: (-2)2 - 3 = 1

    ....

    2011th term is: 12 - 3 = -2

  • See question detail

    He will takes: 480.600 = 288000 [minutes] = 4800 hours

  • See question detail

    The answer: 180o

  • See question detail

    \(81\cdot3+27+9\cdot2+3\cdot3+1\cdot3=300\)

    So the answer is 3 + 1 + 2 + 3 + 3 = 12 [boxes]

  • See question detail

    The times of Timmy takes is:

    1,5.5 = 7,5 [h]

    So in an hour, Manny can mow: \(\dfrac{1}{1,5}=\dfrac{2}{3}\left(one-acre-yard\right)\)

    And Timmy cam mow: \(\dfrac{1}{7,5}=\dfrac{2}{15}\left(one-acre-yard\right)\)

    So they will complete them working together after:

    \(\dfrac{1}{\dfrac{2}{3}+\dfrac{2}{15}}=\dfrac{5}{4}\left(hours\right)\)

    \(\dfrac{5}{4}h=75m\)

    Answer: 75 minutes

  • First
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM