MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 459 )
  • See question detail

    The answer: \(979+\dfrac{1}{11}\cdot979=1068\) cubic centimeters

  • See question detail

    \(\left(3^{75}\right)\cdot\left(2^{113}\right)=\left(3^{72}\right)\cdot3^3\cdot\left(...2\right)=...1\cdot...7\cdot...2=...4\)

  • See question detail

    We have:

    n2 + 11n + 39 = (n+9)(n+2) + 21

    We see: (n+9) - (n+2) = 7\(⋮7\) so we'll have two cases.

    1st case:

    (n+9) and (n+2) disivided by 7

    => (n+9)(n+2) disivided by 49

    but 21 not disivided by 49 => n2 + 11n + 39 not disivided by 49

    2nd case:

    (n+9) and (n+2) not disivided by 7

    => (n+9)(n+2) not disivided by 7

    But 21 disivided by 7

    => (n+9)(n+2) + 21 not disivided by 7

    So n2+11n+39 not disivided by 7

  • See question detail

    \(x-1=0\Leftrightarrow\left(x-1\right)\left(mx+2\right)=0\)

    => With all x \(\left(x-1\right)\left(mx+2\right)=0\)

  • See question detail

    Simple, after number is the sum of odd number in order (1, 3, 5, 7, 9) to the previous term.

    => 6th number of row is: 17 + 9 = 26

    7th of row is: 26 + 11 = 37

    So the 8th of row is 37+13 = 50

  • See question detail

    \(\dfrac{2x}{x+1}+1=\dfrac{2}{x}\Leftrightarrow\dfrac{3x+1}{x+1}=\dfrac{2}{x}\)

    \(\Leftrightarrow3x^2+x=2x+2\Leftrightarrow3x^2=x+2\)

    \(\Leftrightarrow x\left(3x-1\right)=2\)

    - x = 1 => 3x-1 = 2 [satisfactory]

    - x = 2 => 3x - 1 = 1 [unsatisfactory]

    - x = -1 => 3x - 1 = -4 [unsatisfactory]

    - x = -2 => 3x - 1 = -7 [unsatisfactory]

    So x = 1

  • See question detail

    \(\dfrac{1}{\dfrac{1}{\dfrac{1}{n}+\dfrac{1}{3}}}+\dfrac{1}{\dfrac{1}{\dfrac{1}{n}+\dfrac{1}{3}}}=\dfrac{1}{n}+\dfrac{1}{3}+\dfrac{1}{n}+\dfrac{1}{3}=2\left(\dfrac{1}{n}+\dfrac{1}{3}\right)=\dfrac{2}{n}+\dfrac{2}{3}=\dfrac{5}{12}\Leftrightarrow\dfrac{2}{n}=-\dfrac{1}{4}\Leftrightarrow n=-8\)

  • See question detail

    There are \(\dfrac{157-21}{2}+1=69\) [odd numbers] between 20 and 158

  • See question detail

    There are: 35.12 = 420 [months] in 35 years

  • See question detail

    a,

    \(\dfrac{2x^3+x^2-2x-1}{x^4+x^2-2}=\dfrac{x^2\left(2x+1\right)-\left(2x+1\right)}{x^2\left(x^2+1\right)-2}=\dfrac{\left(x^2-1\right)\left(2x+1\right)}{x^2\left(x^2-1\right)+2x^2-2}=\dfrac{\left(x^2-1\right)\left(2x+1\right)}{x^2\left(x^2-1\right)+2\left(x^2-1\right)}=\dfrac{\left(x^2-1\right)\left(2x+1\right)}{\left(x^2-1\right)\left(x^2+2\right)}=\dfrac{2x+1}{x^2+2}\)

  • See question detail

    Based on AM-GM, we have:

    \(\left\{{}\begin{matrix}2004x^4+\dfrac{1}{4}\cdot2004x^2=2004x^4+501x^2\ge\left|2004x^3\right|\ge0\\1002x^2+1002\ge\left|2004x\right|\end{matrix}\right.\)

    => Left side = 0 when when x = 0

    So x = 0

  • See question detail

    x2 + 2xy + 7(x+y) + 2y2 + 10 = 0

    <=> (x2 + 2xy + y2) + 7(x+y) + y2 +10 = 0 

    <=> (x+y)2 + 7(x+y) + y2 + 10 = 0(*)

    P = x+y+3 <=> x+y = P-3

    => (*) = (P-3)2 + 7(P-3) + y2 + 10 = 0

    => P2 - 6P + 9 + 7P - 21 + y2 + 10 = 0

    => P2 + P - 2 = -y2 \(\le0\forall y\)

    => P2 + P - 2 \(\le0\)

    => (P+2)(P-1) \(\le0\)

    => P+2 and P-1 diferent from sign

    => -2 < P < 1

    So maximum of P is 1, minimum of P is -2

  • See question detail

    The answer is: \(\dfrac{1}{\dfrac{1}{2+\dfrac{1}{4}}}=\dfrac{1}{\dfrac{1}{\dfrac{9}{4}}}=\dfrac{1}{\dfrac{4}{9}}=\dfrac{9}{4}\)

  • See question detail

    The answer: \(\dfrac{6}{20}=\dfrac{3}{10}\)

  • See question detail

    The answer: \(\dfrac{25}{100}=\dfrac{1}{4}\)

  • See question detail

    \(\left\{{}\begin{matrix}x\left(y+z\right)=32\\y\left(x+z\right)=27\\z\left(x+y\right)=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy+xz=32\\xy+yz=27\\xz+yz=35\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}xz-yz=5\\xz-xy=8\\yz-xy=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z\left(x-y\right)=5\\x\left(z-y\right)=8\\y\left(z-x\right)=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z\left(x+y-\left(x-y\right)\right)=30\\x\left(y+z-\left(z-y\right)\right)=24\\y\left(x+z-\left(z-x\right)\right)=24\end{matrix}\right.\)

    \(\Rightarrow\left\{{}\begin{matrix}2yz=30\\2zy=24\\2xz=24\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}yz=15\\zy=12\\xz=12\end{matrix}\right.\Rightarrow yzzyxz=15.12.12=2160\Leftrightarrow\left(xyz\right)^2=2160\Leftrightarrow xyz=\pm12\sqrt{15}\)

  • See question detail

    We have:

    \(x^2+x=x\left(x+1\right)⋮2\) is the product of two consecutive integers, so divisible by 2

    \(\Rightarrow A=x^2+x+6⋮2\)

    But A is a prime number and we only have an even prime number is 2

    So A = 2

    => \(x^2+x+6=2\)

    \(\Rightarrow x\in\varnothing\)

    So there isn't any integer x satisfy the above condition

  • See question detail

    Refer at:

    http://diendan.congdongcviet.com/threads/t1366::cach-kiem-tra-nhanh-n-co-phai-la-so-nguyen-to.cpp

  • See question detail

    Because this number is four-digit palindrome, we can tell this number is \(\overline{abba}\)

    Because this number is greatest. We test a = 9

    => \(\overline{9bb9}⋮7and8\Leftrightarrow\overline{9bb9}⋮56\) because GCD of 7 and 8 is 1

    We test b = 1 to 9 but not satisfy

    Then, we test a = 8

    => \(\overline{8bb8}⋮56\)

    => b = 0

    So this number to find is 8008

  • See question detail

    From 1 to 32 has the numbers as 2n is: 1;2;4;8;16;32

    => 32! has factor is: 20.21.22.23.24.25 = 20+1+2+3+4+5 = 215

    So n = 15

  • First
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM