MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 459 )
  • See question detail

    \(\left(3x+2\right)\left(3x+3\right)\left(3x+4\right)=\left(3x+5-3\right)\left(3x+5-2\right)\left(3x+5-1\right)=\left(13-3\right)\left(13-2\right)\left(13-1\right)=10.11.12=1320\)

  • See question detail

    A B C D E  

    Draw the equilateral triangle EBC

    Consider \(\Delta\)AEB and \(\Delta\)AEC, we have:

    - AE is common edge (hypothesis) 

    - AB = AC (hypothesis) 

    - EB = EC (\(\Delta\)EBC is a equilateral triangle) 

    => \(\Delta\)AEB = \(\Delta\)AEC (S-S-S) 

    => \(\widehat{EAB}=\widehat{EAC}=\dfrac{20^o}{2}=10^o\)

    \(\Delta\)ABC balance at A => \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-20^o}{2}=80^o\)

    Because \(\Delta\)EBC is a equilateral triangle so \(\widehat{EBC}=\widehat{ECB}=60^o\)

    \(\Rightarrow\widehat{EBA}=\widehat{ECA}=80^o-60^o=20^o\)

    Consider \(\Delta\)AEC and \(\Delta\)CDA, we have:

    - AC is common edge (hypothesis) 

    - \(\widehat{DAC}=\widehat{ACE}=20^o\)

    - AD = EC (= BC) 

    => \(\Delta\)AEC = \(\Delta\)CDA (S-A-S) 

    => \(\widehat{ACD}=\widehat{EAC}=10^o\)

  • See question detail

    Tell the pencil is a, the paper clips is b and the eraser is c

    => a + 5b = 2c and a = 29b

    => 29b + 5b = 2c

    => 34b = 2c

    => c = 17b

    So 17 paper clips weigh the same as an eraser.

  • See question detail

    Tell these number to find is x

    => 100 < x < 1000

    => x has 3 digits.

    The hundred-digit has 3 choice

    The ten-digit has 3 choice

    The units-digit has 3 choice too

    So there are 3.3.3 = 27 intergers satisfy

  • See question detail

    22017 . 72017 = 2504.4+1.7504.4+1 = ...2*...7 = ...4

    So the units digit of 22017.72017 is 4

  • See question detail

    Convert: 6 feet = 72 inch ; 8 feet = 96 inch

    So the area of this wall is: 72.96 = 6912 (square-inch) 

    The area of each tile is: 4.4 = 16 (square-inch) 

    So there are 6912: 16 = 432 (tiles) are neede to cover all area of this wall

  • See question detail

    We have: am : am = a0 = 1

    So 05 : 05 = 05 : 0  undetermined

    So 00 undetermined

  • See question detail

    x3−y3−z3=3xyz ⇔ (x−y)3 − z3 + 3xy(x−y) – 3xyz = 0

    ⇔ (x−y−z)(x2+y2+z2+xy+xz−yz) = 0 ⇔ x=y+z

    But 2(y+z) = x2 ⇔ x2=2x ⇔ x = 2 (Because x>0)

    ⇒ y + z = 2 ⇒ y = z = 1

    Again have: x2 = 2.(y+z)

    <=> 22 = 2.(1 + 1) <=> 4 = 4 ---- Good ☺

    So (x,y,z) = (2,1,1)

  • See question detail

    x3−y3−z3=3xyz ⇔ (x−y)3 − z3 + 3xy(x−y) – 3xyz = 0

    ⇔ (x−y−z)(x2+y2+z2+xy+xz−yz) = 0 ⇔ x=y+z

    But 2(y+z) = x2 ⇔ x2=2x ⇔ x = 2 (Because x>0)

    ⇒ y + z = 2 ⇒ y = z = 1

    Again have: x2 = 2.(y+z)

    <=> 22 = 2.(1 + 1) <=> 4 = 4 ---- Good ☺

    So (x,y,z) = (2,1,1)

  • See question detail

    7.

    a2 = b2 + c2

    + If b2 and c2 \(⋮̸\)3

    => b2 + c2 = a2 divide 3 residuals 2 (unsatisfactory) 

    So b2, c2 has at least a number \(⋮3\) (because 3 is a prime number) 

    So abc \(⋮3\)

    + If b2 and c2 \(⋮̸\)4

    => b2 + c2 = a2 divide 4 residuals 2 (unsatisfactory) 

    So b2, c2 has at least a number \(⋮4\) (because 3 is a prime number) 

    So abc \(⋮4\)

    + Because \(b^2,c^2\equiv0,1,4\left(mod5\right)\)

    \(\Rightarrow b^2+c^2\equiv0,1,2,3,4\left(mod5\right)\)

    But \(a^2\equiv0,1,4\left(mod5\right)\)

    So the equal cause happen when and only when b2, c2 have at least a number \(⋮5\)

    \(\Rightarrow abc⋮5\)

    \(\left(3,4,5\right)=1\Rightarrow abc⋮60\)

  • See question detail

    Tell the number to find is a

    Because a is a palindrome so p have odd digits

    But a > 2018 and a is the first number so a has 5 digits.

    So the number to find is 10301

  • See question detail

    The number of degrees in oF is:

    13 - (-5) = 18 (oF)

    So the number of degrees in oC is: -7,78oC

  • See question detail

    \(3\text{®}\left(2\text{®}1\right)=3\text{®}\left(2^2-1^2\right)=3\text{®}3=3^2-3^2=0\)

  • See question detail

    1.2 + 3:6.5 - 4

    = 2 + 5/2 - 4 = 9/2 - 4 = 1/2

  • See question detail

    \(\sqrt{2.3.4.5.6.7.10}=\sqrt{50400}=60\sqrt{14}\)

  • See question detail

    5-5.5 + 5 : 5

    = 5 - 25 + 1 = -20 + 1 = -19

  • See question detail

    \(7^{107}=7^{20.5+7}=7^{20.5}\cdot7^7\equiv01\cdot823543\equiv43\left(mod10\right)\)

    So the last two digits of 7107 is 43

  • See question detail

    Suppose 2m + 3n ⋮ 23

    => \(8^n\left(2^m+3^n\right)\text{⋮}23\)

    \(\Rightarrow2^{m+3n}+24^n\text{⋮}23\)

    Because \(24\equiv1\left(mod23\right)\Rightarrow24^n\equiv1\left(mod23\right)\)

    \(\Rightarrow2^{m+3n}+24^n\equiv2^{m+3n}+1\left(mod23\right)\)

    We must prove that 2m+3n + 1 doesn't divisible by 23

    Simple we can have a example: 211 \(⋮̸23\)

    So \(2^m+3^n⋮23̸\)

  • See question detail

    The first number is 1 and the last is: \(51\cdot2+1=101\)

    So their sum is \(\dfrac{\left(101+1\right)\cdot51}{2}=2601\)

  • See question detail

    1 + 4 + 16 + ... + 1024 

    = 20 + 22 + 24 + ... + 210

    = 20 + 22 + 24 + 26 + 28 + 210

    = 1 + 4 + 16 + 64 + 256 + 1024 

    = 1365

  • First
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM