MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 520 )
  • See question detail

    \(3AA1⋮9\) => \(3+A+A+1⋮9\) => \(4+A.2⋮9\) => \(4+A.2=\left\{9;18;...\right\}\)

    If \(A=1\) then \(4+A.2=4+1.2=6\left(wrong\right)\)

    ...................

    We will have \(A=7\)

  • See question detail

    From the question, we have:

    \(a:54=c\left(r=38\right)\) and \(a:18=14\left(r\ge0\right)\)

    We see from the question: \(14.18\le a\le14.18+17\) <=> \(252\le a\le269\)

    If \(c=1\) in the first equation => \(a=54+38=92\left(wrong\right)\)

    If \(c=2\) in the first equation => \(a=54.2+38=146\left(wrong\right)\)

    ............

    If \(c=4\) in the first equation => \(a=54.4+38=254\left(right\right)\)

    So \(a=254\) => \(r=2\).

    So the answer of the question is: \(254+2=256\)

  • See question detail

    Your answer must be changed into: \(1\le x\le1000\) and the result is: \(\dfrac{\left(1000-1\right)+1}{2}=500\) .

  • See question detail

    I think that the positive integers \(\left(Z^+\right)\) is from 1 to more, CTC. 0 is not a positive integer.

  • See question detail

    We see: The number : The pairs = 2.

    So there are: \(1000:2=500\left(pairs\right)\)

    So the answer is: \(500\left(pairs\right)\)

  • See question detail

    All my question is the "NO CALCULATOR" question. (Except for the question wrote: Calculator accept)

  • See question detail

    I had fix it. Thank you for your comment.

  • See question detail

    This is the orignal question in my study book.

  • See question detail

    \(27.8.5^3.64=3^3.2^3.5^3.4^3=\left(3.2.5.4\right)^3=120^3\)

  • See question detail

    There are 2 types of the isosceles triangle:

    + Acute triangle: All base ankles are \(< 90degrees\)

    + Right triangle: There is a right base ankles \(\left(=90degrees\right)\)

    However, an isosceles triangle must be smaller than 180 degrees, the total of all ankles.

  • See question detail

    The cost of 10 erasers and 5 pens are:

    \(\left(1,75.5\right)+\left(0,85.10\right)=8,75+8,5=17,25\)

    So the answer is: \(17,25\)

    P/s: I can't write the symbol of dollar.

  • See question detail

    \(2448:\left[119-\left(x-6\right)\right]=24\)

    \(\left[119-\left(x-6\right)\right]=2448:24\)

    \(\left[119-\left(x-6\right)\right]=102\)

    \(\left(x-6\right)=119-102\)

    \(x-6=17\)

    \(x=17+6=23\)

  • See question detail

    \(2,4+\dfrac{3}{5}-\left(-0,7\right)+1,23\)

    \(=2,4+0,6-\left(-0,7\right)+1,23\)

    \(=3-\left(-0,7\right)+1,23=3,7+1,23=4,93\)

  • See question detail

    The numbers from 100 to 118 satisfy the question.

    So there are: \(\left(118-100\right):1+1=19\left(numbers\right)\)

    So the answer is: \(19numbers\)

  • See question detail

    Using the hundreds digit 4, we have 6 numbers: \(406;408;460;468;480;486\)

    Using the hundreds digit 6, we have 6 numbers: \(604;608;640;648;680;684\)

    Using the hundreds digit 8, we have 6 numbers: \(804;806;840;846;860;864\)

    If the hundreds digit is 0, then the numbers are not the 3-digit-number.

    So there are: \(6+6+6=18\left(numbers\right)\)

  • See question detail

    At the end of the summer, his height has increased: \(140.5\%=140:100.5=7\left(cm\right)\)

    So his height at the end of the summer measured in cm is: \(140+7=147\left(cm\right)\)

    So the answer is: \(147cm\)

  • See question detail

    Because \(BC=5cm\) => \(AD=5cm\)

    The total area of triangle AMD and triangle BCN is:

    \(\left(\dfrac{2.5}{2}\right).2=10\left(cm^2\right)\)

    Then the area of trapezoid MNCD is:

    \(60-10=50\left(cm^2\right)\)

    So the answer is: \(50cm^2\)

  • See question detail

    Trung Nguyễn, do you copy the solution in the link?

  • See question detail

    You can go to this link for the answer: https://mks.mff.cuni.cz/kalva/short/soln/sh9023.html

  • See question detail

    The greatest distinct 4-digit number is: \(9876\). The least 3-digit number is: \(100\).

    So their sum is: \(9876+100=9976\)

  • First
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM