MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 521 )
  • See question detail

    From the question => The lowest \(\left|x+1\right|\) is \(3\) and the biggest is \(108\).

    So there are: \(\left(108-3+1\right).2=212\left(integers\right)\) \(x\) satisfy this question.

  • See question detail

    There are: \(100-\left(12+25\right)=63\%\) people have black hair.

    There are: \(\left(600:100\right).63=378\left(people\right)\) have black hair.

    So the answer is \(378\) people have black hair.

  • See question detail

    The volume of the cube is:

    \(15.15.15=3375\left(cm^3\right)\)

  • See question detail

    \(\dfrac{3^5.5^6}{9^2.25^4}-\dfrac{7^3.8^4}{21.7^2.16^2}\)

    \(=\dfrac{3^5.5^6}{3^4.5^8}-\dfrac{7^3.8^4}{\left(7.3\right).7^2.\left(8.2\right)^2}\)

    \(=\dfrac{3}{5^2}-\dfrac{7^3.8^4}{7^3.3.8^2.2^2}\)

    \(=\dfrac{3}{25}-\dfrac{8^2}{3.2^2}\)

    \(=\dfrac{3}{25}-\dfrac{64}{12}\)

    \(=\dfrac{3}{25}-\dfrac{16}{3}\)

    \(=\dfrac{-391}{75}\)

  • See question detail

    Sorry, Phan Thanh Tinh made the right comment.

  • See question detail

    The value of y must be \(y\le3\) because if \(y\ge4\) then \(5^{y+1}>1000\).

    If \(y=0;1;3\) then it is not possible for \(x\) to have the result \(2^{x+1}.5^{y+1}=1000\).

    So \(y\) must be \(2\). 

    When \(y=2\), then \(5^{y+1}=5^{2+1}=5^3=125\).

    Then \(2^{x+1}=1000:125=8\).

    => \(x=2\).

    So \(x=2\) and \(y=2\)

  • See question detail

    Arrcoding to the question, we have:

    \(N:7\left(r=3\right)\)  <1>

     \(N:5\left(r=4\right)\) <2>

    From <1> we have: \(3;10;17;24;31...;7k+3\)

    From <2> we have: \(4;9;14;19;24;...;5k+4\)

    We have number \(24\) satisfy the question.

    So the answer is \(24\).

  • See question detail

    There is total: \(\left(100-1\right)+1=100\left(numbers\right)\)

    The sum of all numbers is: \(\left(1+100\right).100:2=5050\)

    The average of all numbers is: \(5050:100=50,5\)

    So the answer is: \(50,5\)

  • See question detail

    We have: \(1cm=10mm\)

    => \(20cm=200mm\)

    So the answer is \(200mm\) (200 millimeter).

  • See question detail

    We have:

    \(\dfrac{x+1}{2}+3< \dfrac{9}{2}\)

    <=> \(\dfrac{x+1}{2}+\dfrac{6}{2}< \dfrac{9}{2}\)

    <=> \(\dfrac{x+1}{2}< \dfrac{9}{2}-\dfrac{6}{2}\)

    <=> \(\dfrac{x+1}{2}< \dfrac{3}{2}\)

    => \(x+1< 3\)

    => \(x< 2\)

    So \(x< 2\) satisfy \(\dfrac{x+1}{2}+3< \dfrac{9}{2}\)

  • See question detail

    The answer is D.

    The graph A is not correct at the number of dollars, the graph B and C is not correct at the number of laps.

  • See question detail

    So the answer is A: \(7^{15}\)

  • See question detail

    \(7^5.7^{10}=7^{5+10}=7^{15}\)

  • See question detail

    The answer is A, B,C,D,G,I.

  • See question detail

    The perimeter of the rectangular playground is:

    \(\left(7y-4\right).2+\left(2y+9\right).2=14y-8+4y+18=18y+\left(-8+18\right)=18y+10\)

    So the answer is A: \(18y+10\)

  • See question detail

    We call d = \(D\left(21n+4;14n+3\right)\)

    We have:

    \(\dfrac{21n+4:d}{14n+3:d}\)

    => \(\dfrac{2\left(21n+4\right):d}{3\left(14n+3\right):d}\)

    => \(\dfrac{42n+8:d}{42n+9:d}\)

    => \(\left(42n+9\right)-\left(42n+8\right):d\)

    => \(1:d\)

    So \(\dfrac{21n+4}{14n+3}\) is irreducible for all \(n\in N\)

  • See question detail

    Into the figure, this shape is made of 8 small cubes.

    The surface of the small cube = \(3.3.6=54\left(cm^2\right)\)

    The surface of the big cube = \(54.8:2=216\left(cm^2\right)\)

    So the answer is \(216cm^2\)

    P/s: The surface of the big cube is used by \(\dfrac{1}{2}\) surface of 8 small cubes

  • See question detail

    The least possible number is: \(1000\)

    The biggest possible number is: \(9998\)

    There are: \(\left(9998-1000\right):2+1=4500\left(numbers\right)\)

    So there are \(4500\)  4-digit-even numbers.

  • See question detail

    We call the natural numbers: \(x\)

    From the context, we have: \(x< 2017\)

    The least possible number is: \(0\)

    The largest possible number is: \(2016\)

    So there are: \(\left(2016-0\right)+1=2017\left(numbers\right)\)

    So there are \(2017\) numbers are not greater than 2017.

  • See question detail

    Sum of their digits equal to 9 <=> The numbers must be divisible by 9.

    The least possible number is: \(18\).

    The biggest possible number is: \(90\) (99 is not possible because \(9+9\ne9\) ).

    So there are: \(\left(90-18\right):9+1=9\left(numbers\right)\)

    So there are \(9\) numbers from 10 to 99 have sum of their digits equal to 9.

  • First
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM