MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • Newest
  • Featured
  • Votes
  • Unanswered
  • First «
  • 463
  • 464
  • 465
  • 466
  • 467
  • » Last
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG

All questions

  • Newest
  • Featured
  • Votes
  • Unanswered

...
Jeff Bezos
19/03/2017 at 00:51
Answers
2
Follow

Solve for the value of x in (x+2) : 2 = (5x-8) : 4

simple equation

  • ...
    Hồ Thu Giang 19/03/2017 at 09:46

    (x + 2) : 2 = (5x - 8) : 4

    => \(\dfrac{x+2}{2}=\dfrac{5x-8}{4}\)

    <=> 4(x + 2) = 2(5x - 8)

    <=> 4x + 8 = 10x - 16

    => 24 = 6x

    => x = 4

    Jeff Bezos selected this answer.
  • ...
    FA KAKALOTS 03/02/2018 at 12:41

    (x + 2) : 2 = (5x - 8) : 4

    => x+22=5x−84

    <=> 4(x + 2) = 2(5x - 8)

    <=> 4x + 8 = 10x - 16

    => 24 = 6x

    => x = 4


...
Pé Lợn Hồng
29/05/2017 at 21:41
Answers
4
Follow

Question 1 :

Lily has three notebooks. Saly has five notebooks. Mai has more than Lily four notebooks but Mai has less than James 4 notebooks. How many notebooks are there does James have ?

                                                                                             ( 16 : 00 of 30 / 5 /2017 has answer )

                                                                               

  • ...
    Nguyễn Việt Hoàng 30/05/2017 at 21:14
    Dương Minh Hiếu 11 hour ago (09:42)

    Mai has notebooks is :

         3+4=7 notebooks

    James has notebooks is :

          7+4=11 notebooks

               Answer : 11 notebooks

  • ...
    Nguyễn Việt Hoàng 30/05/2017 at 21:14

    Mai has notebooks is :

         3+4=7 notebooks

    James has notebooks is :

          7+4=11 notebooks

               Answer : 11 notebooks

  • ...
    Tina 29/05/2017 at 21:48

    Mai's notebooks: \(4+3=7\left(notebooks\right)\)

    James's notebooks: \(4+7=11\left(notebooks\right)\)

    Answer: James has 11 notebooks


...
Summer Clouds moderators
11/08/2017 at 09:12
Answers
2
Follow

A rectangle is inscribed in a circle of radius 5 cm. The base of the rectangle is 8 cm. What is the area of the rectangle?

  • ...
    Phan Thanh Tinh Coordinator 11/08/2017 at 14:17

    A B C D O H I

    Name the points as shown

    We have : OA = OB = OC = OD = 5 cm

    Draw the altitude OH of \(\Delta OCD\),then it's also a median

    \(\Rightarrow DH=\dfrac{CD}{2}=\dfrac{8}{2}=4\) (cm)

    Applying the Pythagoras theorem to the right \(\Delta OHD\),we have :

    \(OH=\sqrt{OD^2-DH^2}=\sqrt{5^2-4^2}=\sqrt{9}=3\) (cm)

    \(\Delta ADC,\Delta ODC\) have the common altitude DI and the bases AC = 2OC, so \(S_{ADC}=2S_{ODC}\)

    \(S_{ABCD}=CD.AD=2.\dfrac{CD.AD}{2}=2.S_{ADC}=2.2.S_{ODC}\)

    \(=4.\dfrac{OH.CD}{2}=2.3.8=48\) (cm2)

    Selected by MathYouLike
  • ...
    phanhuytien 14/08/2017 at 20:35

    48 cm

    đúng 1000000000000%


...
Luffy xyz 123
20/08/2017 at 19:13
Answers
7
Follow

Expressiveness ( tính nhanh ):

50 + 300 + 50 + 100

  • ...
    phanhuytien 20/08/2017 at 20:03

    50 + 300 + 50 + 100

    = ( 50 + 50 ) + ( 300 + 100 )

    = 100 + 400

    = 500hahaeoeothanghoa

  • ...
    Help you solve math 20/08/2017 at 20:15

       50+300+50+100

    =(50+50)+(300+100)

    =100+400

    =500

  • ...
    Luffy xyz 123 20/08/2017 at 19:13

    50 + 300 + 50 + 100

    = ( 50 + 50 ) + ( 300 + 100 )

    = 100 + 400

    = 500


...
Math You Like
22/09/2017 at 14:06
Answers
1
Follow

abc + bb = cba 

a=?     b=?     c=?

  • ...
    Lê Quốc Trần Anh Coordinator 22/09/2017 at 15:35

    We have: abc + bb = cba.

    => b = 9, a > 5 and c - a = 1 (the only situation satisfy)

    So the numbers abc are: 596;697;798

    P/s: with \(a\ne b\ne c\) and no proving.

    Math You Like selected this answer.

...
Lê Quốc Trần Anh Coordinator
19/10/2017 at 18:12
Answers
3
Follow

Each side of a regular hexagon measures 6 cm. What is the perimeter of the hexagon? 

  • ...
    Dao Trong Luan Coordinator 19/10/2017 at 18:40

    The perimeter of the hexagon is:

    6.6 = 36 [cm]

    So perimeter of this hexagon is 36cm

    Lê Quốc Trần Anh selected this answer.
  • ...
    Detecvite Conan 20/10/2017 at 18:47

     The perimeter of the hexagon is:

    6.6=36 (cm)

     The perimeter of this hexagon is: 36cm

  • ...
    Detecvite Conan 20/10/2017 at 18:45

    The perimeter of the hexagon is:

    6.6=36 (cm)

    So the result is: 36 (cm)


...
Cloud moderators
08/12/2017 at 08:43
Answers
2
Follow

n the figure, the segments of lengths x and y lie on perpendiculars to the diagonals of a square of side length 4. The sum x + y can be written in the form \(\sqrt{z}\) . What is the value of z?
undefined

  • ...
    Nguyễn Hưng Phát 08/12/2017 at 10:02

    Because x+y creates 1 part 2 of a diagonal line of the square so \(x+y=\sqrt{\dfrac{4}{2}}=\sqrt{2}\)

    So x+y=\(\sqrt{z}\Rightarrow\sqrt{2}=\sqrt{z}\Rightarrow z=2\)

    Answer:The value of z is:2

    Selected by MathYouLike
  • ...
    Nguyễn Hưng Phát 08/12/2017 at 09:57

    Chúng ta có: x + y =\(\sqrt{\dfrac{4}{2}}=\sqrt{2}\) because x+y creates 1 part 2 of a diagonal line

    So x+y=\(\sqrt{z}\Rightarrow\sqrt{2}=\sqrt{z}\)\(\Rightarrow z=2\)

    Answer:z=2


...
Lê Quốc Trần Anh Coordinator
04/01/2018 at 17:49
Answers
0
Follow

How many miles can Scotty ride on a bike, going at the rate of 8 miles per hour, if he must walk back to the starting point at a rate of 3 miles per hour (following the same route he traveled on his bike) and he is to be gone a total of 11 hours?  


...
Lê Quốc Trần Anh Coordinator
04/03/2018 at 04:19
Answers
1
Follow

What is the percent probability that a randomly selected multiple of 3 less than or equal to 3000 is also a multiple of 5?  

  • ...
    Lê Quốc Trần Anh Coordinator 07/03/2018 at 04:40

    ANSWER:

    Multiples of 3 are 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, … . It appears that every fifth multiple of 3 is also a multiple of 5. The percent probability that a randomly selected multiple of 3 is also a multiple of 5 is 1/5 = 20%.


...
Lê Quốc Trần Anh Coordinator
07/05/2018 at 11:44
Answers
0
Follow

Prove that for any two relatively prime positive integers $m$ and $n$, the multiples of $n$ cycle through every possible remainder when divided by $n$.

For example, for $n=3$ and $m=5$, the remainder when $n$ is divided by $m$ is $3$, the remainder for $2n$ is $1$, the remainder for $3n$ is $4$, the remainder for $4n$ is $2$, and the remainder for $5n$ is $0$.


4801

questions

Weekly ranking


Tags

games 18  double counting 8  generating functions 2  probabilistic method 1  Polynomial 9  inequality 13  area 17  Equation 9  Primitive Roots Modulo Primes 1  Primitive in Arithmetic Progression 6  Base n Representatioons 4  Pell Equation 1  mixed number 1  Fraction 29  Circle 3  Imaginary numbers 1  Decimal number 2  Volume 2  percentages 6  simple equation 19  absolute value 19  rational numbers 20  Operation of Indices 21  Simulataneous Equation A System of Equations 25  Multiplication of Polynomial 17  divisibility 24  Maximum 5  Minimum 8  Fraction 4  Prime Numbers and Composite Numbers 13  Square Number 26  Even and Odd Numbers 13  GDC and LCM 11  GCD and LCM 12  Permutation and combination 9  combinations 5  interger 7  number 10  Diophantine equations 2  equations 1  Grade 6 19  Power 3  equality 2  maxima-minima 2  square root 1  Polygon 2  IGCSE 1  factorial 1  integers 2 
Trigonometric
sin cos tan cot sinh cosh tanh
Lim-log

Combined operations

 

α β γ δ θ σ ∂ ε ω φ ϕ π μ λ Ψ ξ η χ ζ ι κ ν ψ Ω ρ τ υ Γ Δ Λ Φ Π Σ Υ Ξ ϑ Θ ς ϰ
∞ ⊻ ⩞ ⋎ ⋏ ≀ ∪ ⊎ ⋓ ∩ ⋒ ⊔ ⊓ ⨿ ⊗ ⊙ ⊚ ⊛ ⊘ ⊝ ⊕ ⊖ ⊠ ◯ ⊥
⇔ ⇒ ⇐ → ← ↔ ↑ ↓
Operations
+ - ÷ × ≠ = ⊂ ⊃ ⊆ ⊇ ≈ ∈ ∉ ∃ ∄ ≤ ≥ ± ∓ ≠ ∅ ≃ ≅ ≡ ⋮ ⋮̸ ∀
(□) [□] {□} |□|

The type of system

m×n 1×2 1×3 1×4 1×5 1×6
2×1 2×2 2×3 2×4 2×5 2×6
3×1 3×2 3×3 3×4 3×5 3×6
4×1 4×2 4×3 4×4 4×5 4×6
5×1 5×2 5×3 5×4 5×5 5×6
6×1 6×2 6×3 6×4 6×5 6×6

Recipe:

© HCEM 10.1.29.225
Crafted with by HCEM