-
\(5\cdot\left(11+4:4\right)\)
\(=5\cdot\left(11+1\right)\)
\(=5\cdot12=60\)
Selected by MathYouLike
-
The volume of the cup is : \(\left(\dfrac{6}{2}\right)^2\pi.12=108\pi\) (cm3)
The volume of 48 tapioca bubbles is : \(108\pi-100\pi=8\pi\) (cm3)
The volume of each tapioca bubble is : \(\dfrac{8\pi}{48}=\dfrac{\pi}{6}\) (cm3)
The answer is : \(\sqrt[3]{\dfrac{\pi}{6}:\dfrac{4\pi}{3}}=0.5\) (cm)
-
Tell the praction to find is \(\dfrac{a}{b}\)
\(\Rightarrow\left\{{}\begin{matrix}b-a=8\\\dfrac{2a}{b-1}=1\end{matrix}\right.\)
=> a + a = b - 1
=> a + 1 = b - a = 8
=> a = 7
=> b = 15
So the fraction to find is \(\dfrac{7}{15}\)
Lê Quốc Trần Anh selected this answer. -
FA Liên Quân Garena 08/01/2018 at 21:46
Tell the praction to find is ab
⇒⎧⎨⎩b−a=82ab−1=1
=> a + a = b - 1
=> a + 1 = b - a = 8
=> a = 7
=> b = 15
So the fraction to find is 715
-
Asuna Yuuki 04/01/2018 at 22:04
Tell the praction to find is
⇒⎨⎩b−a=82ab−1=1⇒{b−a=82ab−1=1
=> a + a = b - 1
=> a + 1 = b - a = 8
=> a = 7
=> b = 15
So the fraction to find is 715
-
HSG Phan Huy Toàn 04/05/2018 at 13:59
We have :
X * 45 + X * 34 + X * 45
= X * ( 45 + 34 + 45 )
= X * 134
So X can not be worth being
P/s : Invalid, wrong
-
nhathuyth1 03/05/2018 at 12:36
Hey how much is it equal to?
-
Nguyễn Mạnh Hùng 19/06/2018 at 09:37
Each day, all three plant produce the number of cars is:
100 + 80 + 70 = 250 (cars)
So, need the number of full days to produce 1600 cars is :
1600 : 250 = 6,2 days
So need 7 full days to produce 1600 cars
Lê Quốc Trần Anh selected this answer.
Quoc Tran Anh Le Coordinator
05/08/2018 at 03:50
-
huynh anh phuong 23/06/2020 at 11:37
Since no box are labeled correct; box 3 must have baseballs only.So easy that box 2 contains only tennis balls.
-
Bùi Vân 21/04/2017 at 14:14
Let I be the center of the circle is inscribed in right triangle ABC.
Because CI, AI, BI is bisector of \(\widehat{C};\widehat{A};\widehat{B}\) , we have:
\(\widehat{FAI}=\widehat{DAI};\widehat{DBI}=\widehat{EBI};\widehat{FCI}=\widehat{ECI}.\)
So: \(\Delta AFI=\Delta ADI;\Delta BEI=\Delta BDI;\Delta CIF=\Delta CIE\).
Deduced: \(AF=AD=7;DE=BD=13;CE=CF\).
\(AB=AD+DB=3+13=20\).
Apply theorem Pi-ta-go in \(\Delta CAB\) , we have:
\(AC^2+BC^2=AB^2\) \(\Leftrightarrow\left(AF+CF\right)^2+\left(CE+BE\right)^2=AB^2\)
\(\Leftrightarrow\left(7+CF\right)^2+\left(13+CE\right)^2=20^2\)
\(\Leftrightarrow\left(7+CE\right)^2+\left(13+CE\right)^2=20^2\) (because CE = CF )
\(\Leftrightarrow2CE^2+40CE-182=0\)\(\Leftrightarrow CE=-10+\sqrt{191}\)
\(AC=7-10+\sqrt{191}=-3+\sqrt{191}\); \(BC=13-10+\sqrt{191}=3+\sqrt{191}\).
\(S_{\Delta ACB}=\dfrac{AC\times BC}{2}=\dfrac{\left(-3+\sqrt{191}\right)\left(3+\sqrt{191}\right)}{2}=91\).