MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • Newest
  • Featured
  • Votes
  • Unanswered
  • First «
  • 382
  • 383
  • 384
  • 385
  • 386
  • » Last
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG

All questions

  • Newest
  • Featured
  • Votes
  • Unanswered

...
Summer Clouds moderators
16/10/2017 at 08:43
Answers
1
Follow

Compare
undefined.

  • ...
    Dao Trong Luan Coordinator 16/10/2017 at 18:20

    \(A=1\cdot3\cdot5\cdot...\cdot99\)

    \(\Rightarrow2\cdot4\cdot6\cdot...\cdot100\cdot A=1\cdot2\cdot3\cdot4\cdot...\cdot100\)

    \(\Rightarrow A=\dfrac{1\cdot2\cdot3\cdot...\cdot100}{2\cdot4\cdot6\cdot...\cdot100}=\dfrac{\left(1\cdot2\cdot3\cdot4\cdot...\cdot50\right)\cdot\left(51\cdot52\cdot...\cdot100\right)}{\left(2\cdot1\right)\left(2\cdot2\right)\left(2\cdot3\right)...\left(2\cdot50\right)}\)\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot50\right)\left(51\cdot52\cdot...\cdot100\right)}{2^{50}\cdot\left(1\cdot2\cdot3\cdot...\cdot50\right)}=\dfrac{51\cdot52\cdot...\cdot100}{2^{50}}=\dfrac{51}{2}\cdot\dfrac{52}{2}\cdot...\cdot\dfrac{100}{2}=B\)So A = B


...
Cloud moderators
01/12/2017 at 14:23
Answers
1
Follow

If a = 12, b = 4, c = 5 and \(x=\dfrac{1}{2}\) , then what is the value of undefined

  • ...
    Nguyễn Hưng Phát 01/12/2017 at 17:06

    If a=12,b=4,c=5 and x=\(\dfrac{1}{2}\) so \(\dfrac{\left(\dfrac{abc}{x}\right)-\left(6b^2-4\right)}{0,5}\)\(=\dfrac{\left(\dfrac{12.4.5}{\dfrac{1}{2}}\right)-\left(6.4^2-4\right)}{0,5}\)

    \(=\dfrac{\left(\dfrac{240}{\dfrac{1}{2}}\right)-\left(96-4\right)}{0,5}=\dfrac{480-92}{0,5}=\dfrac{388}{\dfrac{1}{2}}=388.2=776\)

    Answer:776`

    Selected by MathYouLike

...
Alone
01/01/2018 at 11:56
Answers
2
Follow

Solve the equation :\(\dfrac{x+5}{3}-\dfrac{x-3}{5}=\dfrac{5}{x-3}-\dfrac{3}{x+5}\)

  • ...
    Phan Thanh Tinh Coordinator 03/01/2018 at 10:32

    Condition : \(x\ne3;-5\)

    \(\dfrac{x+5}{3}-\dfrac{x-3}{5}=\dfrac{5}{x-3}-\dfrac{3}{x+5}\)

    \(\Leftrightarrow\dfrac{5\left(x+5\right)-3\left(x-3\right)}{15}=\dfrac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)

    \(\Leftrightarrow\left(2x+34\right)\left(\dfrac{1}{15}-\dfrac{1}{\left(x-3\right)\left(x+5\right)}\right)=0\)

    \(\Leftrightarrow\left(x+17\right).\dfrac{\left(x-3\right)\left(x+5\right)-15}{15\left(x-3\right)\left(x+5\right)}=0\)

    \(\Leftrightarrow\left(x+17\right)\left(x^2+2x-30\right)=0\)

    \(\Rightarrow\left[{}\begin{matrix}x+17=0\\x^2+2x-30=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=-1\pm\sqrt{31}\end{matrix}\right.\)(satisfied)

    So, \(S=\left\{-17;-1\pm\sqrt{31}\right\}\)

    Alone selected this answer.
  • ...
    FA Liên Quân Garena 08/01/2018 at 21:57

    Condition : x≠3;−5

    x+53−x−35=5x−3−3x+5

    ⇔5(x+5)−3(x−3)15=5(x+5)−3(x−3)(x−3)(x+5)

    ⇔(2x+34)(115−1(x−3)(x+5))=0

    ⇔(x+17).(x−3)(x+5)−1515(x−3)(x+5)=0

    ⇔(x+17)(x2+2x−30)=0

    ⇒[x+17=0x2+2x−30=0

    ⇒[x=−17x=−1±√31

    (satisfied)

    So, S={−17;−1±√31}


...
Lê Quốc Trần Anh Coordinator
13/06/2018 at 02:07
Answers
0
Follow

Prove that with a,b,c > 0: \(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{a}\)


...
Bookname
04/08/2018 at 01:32
Answers
0
Follow

Also in this song, where do you describe the guy sitting on the song "Golden Song"?


...
Quoc Tran Anh Le Coordinator
14/09/2018 at 07:06
Answers
1
Follow

Find the smallest positive integer x such that 12x = 25y2, where y is a positive integer

AIMO

  • ...
    Alone 14/09/2018 at 16:17

    Because  \(\dfrac{12x}{25}\) is a square number but 12=22.3

    So \(x⋮25\) and x smallest so x=3.25=75

    Selected by MathYouLike

...
Summer Clouds
19/05/2017 at 09:12
Answers
2
Follow

Find x: \(x^2-5x+4=0\) in two ways : polynomial analysis by factoria and formula general solution of quadratic equation.

  • ...
    Phan Thanh Tinh Coordinator 19/05/2017 at 13:02

    I solved the first way for you.This is the second way :

    We have :\(x^2-5x+4=0\Rightarrow a=1;b=-5;c=4\)

    \(\Rightarrow b^2-4ac=25-16=9>0\)\(\Rightarrow\sqrt{b^2-4ac}=3\)

    \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5+3}{2}=4\\x=\dfrac{5-3}{2}=1\end{matrix}\right.\)

    Summer Clouds selected this answer.
  • ...
    Nguyễn Thị Thu Thủy 19/05/2017 at 20:34

    Summer Clouds

     I solved the first way for you.This is the second way :

    We have :x2−5x+4=0⇒a=1;b=−5;c=4x2−5x+4=0⇒a=1;b=−5;c=4

    ⇒b2−4ac=25−16=9>0⇒b2−4ac=25−16=9>0⇒√b2−4ac=3⇒b2−4ac=3

    ⇒⎡⎢ ⎢⎣x=5+32=4x=5−32=1


...
Summer Clouds moderators
21/07/2017 at 08:47
Answers
1
Follow

Prove that \(2^{51}-1\)   divisible  by 7.

  • ...
    Lê Quốc Trần Anh Coordinator 21/07/2017 at 09:01

    \(2^{51}-1=2^{3.17}-1=8^{17}-1=\left(8-1\right).\left[\left(8^{17-1}\right)+\left(8^{17-2}\right)+...+\left(8^{17-16}\right)+8^{17-17}\right]\) is divisible by 7.


...
Summer Clouds moderators
08/08/2017 at 08:57
Answers
1
Follow

The measure of an interior angle of a regular polygon is eight times the measure of one of its exterior angles. How many sides does the polygon have?

  • ...
    Phan Thanh Tinh Coordinator 08/08/2017 at 09:12

    Let n be the number of sides of the regular polygon\(\left(n\in N;n\ge3\right)\),then the measure of each interior angle is \(\dfrac{180\left(n-2\right)}{n}\) and the measure of each exterior angle is \(180-\dfrac{180\left(n-2\right)}{n}\).We have :

    \(\dfrac{180\left(n-2\right)}{n}=8\left(180-\dfrac{180\left(n-2\right)}{n}\right)\)

    \(\Leftrightarrow\dfrac{180\left(n-2\right)}{n}-1440+8.\dfrac{180\left(n-2\right)}{n}=0\)

    \(\Leftrightarrow9.\dfrac{180\left(n-2\right)}{n}=1440\Leftrightarrow\dfrac{9\left(n-2\right)}{n}=8\Rightarrow9n-18=8n\Leftrightarrow n=18\)

    So,the polygon has 18 sides

    Selected by MathYouLike

...
Phan Huy Toàn
16/08/2017 at 16:04
Answers
6
Follow

75+12+43+25+88+50+57=?

  • ...
    WhySoSerious 16/08/2017 at 16:06

    \(75+12+43+25+88+50+57\)

    \(=\left(75+25\right)+\left(12+88\right)+\left(43+57\right)+50\)

    \(=100+100+100+50=350\)

    Selected by MathYouLike
  • ...
    AL 16/08/2017 at 16:06

    \(75+12+43+25+88+50+57\)

    \(=\left(75+25\right)+\left(12+88\right)+\left(43+57\right)+50\)

    \(=100+100+100+50\)

    \(=300+50=350\)

  • ...
    Thanh Trà love Vương Tuấn Khải _ Tfboys 17/08/2017 at 10:24

    75 + 12 + 43 + 25 + 88 + 50 + 57

    = ( 75 + 25 ) + ( 43 + 57 ) + ( 12 + 88 ) + 50

    = 100 + 100 + 100 + 50

    = 300 + 50

    = 350


4801

questions

Weekly ranking

  • ...

    Trần Nhật Quỳnh

    This week's point: . Total: 0
  • ...

    haiplt

    This week's point: . Total: 6
  • ...

    at the speed of light

    This week's point: . Total: 0
  • ...

    Cô Nàng Lạnh Lùng

    This week's point: . Total: 0
  • ...

    Use Ka Ti

    This week's point: . Total: 0
  • ...

    lamber love liya

    This week's point: . Total: 0
  • ...

    Nguyễn Thị Huyền Mai

    This week's point: . Total: 0
  • ...

    Ngu Ngu Ngu

    This week's point: . Total: 24
  • ...

    phan gia huy

    This week's point: . Total: 1
  • ...

    Nguyễn Phương Ly Fan Triệu Lệ Dĩnh

    This week's point: . Total: 0

Tags

games 18  double counting 8  generating functions 2  probabilistic method 1  Polynomial 9  inequality 13  area 17  Equation 9  Primitive Roots Modulo Primes 1  Primitive in Arithmetic Progression 6  Base n Representatioons 4  Pell Equation 1  mixed number 1  Fraction 29  Circle 3  Imaginary numbers 1  Decimal number 2  Volume 2  percentages 6  simple equation 19  absolute value 19  rational numbers 20  Operation of Indices 21  Simulataneous Equation A System of Equations 25  Multiplication of Polynomial 17  divisibility 24  Maximum 5  Minimum 8  Fraction 4  Prime Numbers and Composite Numbers 13  Square Number 26  Even and Odd Numbers 13  GDC and LCM 11  GCD and LCM 12  Permutation and combination 9  combinations 5  interger 7  number 10  Diophantine equations 2  equations 1  Grade 6 19  Power 3  equality 2  maxima-minima 2  square root 1  Polygon 2  IGCSE 1  factorial 1  integers 2 
Trigonometric
sin cos tan cot sinh cosh tanh
Lim-log

Combined operations

 

α β γ δ θ σ ∂ ε ω φ ϕ π μ λ Ψ ξ η χ ζ ι κ ν ψ Ω ρ τ υ Γ Δ Λ Φ Π Σ Υ Ξ ϑ Θ ς ϰ
∞ ⊻ ⩞ ⋎ ⋏ ≀ ∪ ⊎ ⋓ ∩ ⋒ ⊔ ⊓ ⨿ ⊗ ⊙ ⊚ ⊛ ⊘ ⊝ ⊕ ⊖ ⊠ ◯ ⊥
⇔ ⇒ ⇐ → ← ↔ ↑ ↓
Operations
+ - ÷ × ≠ = ⊂ ⊃ ⊆ ⊇ ≈ ∈ ∉ ∃ ∄ ≤ ≥ ± ∓ ≠ ∅ ≃ ≅ ≡ ⋮ ⋮̸ ∀
(□) [□] {□} |□|

The type of system

m×n 1×2 1×3 1×4 1×5 1×6
2×1 2×2 2×3 2×4 2×5 2×6
3×1 3×2 3×3 3×4 3×5 3×6
4×1 4×2 4×3 4×4 4×5 4×6
5×1 5×2 5×3 5×4 5×5 5×6
6×1 6×2 6×3 6×4 6×5 6×6

Recipe:

© HCEM 10.1.29.225
Crafted with by HCEM