-
\(A=1\cdot3\cdot5\cdot...\cdot99\)
\(\Rightarrow2\cdot4\cdot6\cdot...\cdot100\cdot A=1\cdot2\cdot3\cdot4\cdot...\cdot100\)
\(\Rightarrow A=\dfrac{1\cdot2\cdot3\cdot...\cdot100}{2\cdot4\cdot6\cdot...\cdot100}=\dfrac{\left(1\cdot2\cdot3\cdot4\cdot...\cdot50\right)\cdot\left(51\cdot52\cdot...\cdot100\right)}{\left(2\cdot1\right)\left(2\cdot2\right)\left(2\cdot3\right)...\left(2\cdot50\right)}\)\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot50\right)\left(51\cdot52\cdot...\cdot100\right)}{2^{50}\cdot\left(1\cdot2\cdot3\cdot...\cdot50\right)}=\dfrac{51\cdot52\cdot...\cdot100}{2^{50}}=\dfrac{51}{2}\cdot\dfrac{52}{2}\cdot...\cdot\dfrac{100}{2}=B\)So A = B
-
Nguyễn Hưng Phát 01/12/2017 at 17:06
If a=12,b=4,c=5 and x=\(\dfrac{1}{2}\) so \(\dfrac{\left(\dfrac{abc}{x}\right)-\left(6b^2-4\right)}{0,5}\)\(=\dfrac{\left(\dfrac{12.4.5}{\dfrac{1}{2}}\right)-\left(6.4^2-4\right)}{0,5}\)
\(=\dfrac{\left(\dfrac{240}{\dfrac{1}{2}}\right)-\left(96-4\right)}{0,5}=\dfrac{480-92}{0,5}=\dfrac{388}{\dfrac{1}{2}}=388.2=776\)
Answer:776`
Selected by MathYouLike
-
Condition : \(x\ne3;-5\)
\(\dfrac{x+5}{3}-\dfrac{x-3}{5}=\dfrac{5}{x-3}-\dfrac{3}{x+5}\)
\(\Leftrightarrow\dfrac{5\left(x+5\right)-3\left(x-3\right)}{15}=\dfrac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Leftrightarrow\left(2x+34\right)\left(\dfrac{1}{15}-\dfrac{1}{\left(x-3\right)\left(x+5\right)}\right)=0\)
\(\Leftrightarrow\left(x+17\right).\dfrac{\left(x-3\right)\left(x+5\right)-15}{15\left(x-3\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\left(x+17\right)\left(x^2+2x-30\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+17=0\\x^2+2x-30=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=-1\pm\sqrt{31}\end{matrix}\right.\)(satisfied)
So, \(S=\left\{-17;-1\pm\sqrt{31}\right\}\)
Alone selected this answer. -
FA Liên Quân Garena 08/01/2018 at 21:57
Condition : x≠3;−5
x+53−x−35=5x−3−3x+5
⇔5(x+5)−3(x−3)15=5(x+5)−3(x−3)(x−3)(x+5)
⇔(2x+34)(115−1(x−3)(x+5))=0
⇔(x+17).(x−3)(x+5)−1515(x−3)(x+5)=0
⇔(x+17)(x2+2x−30)=0
⇒[x+17=0x2+2x−30=0
⇒[x=−17x=−1±√31
(satisfied)
So, S={−17;−1±√31}
Quoc Tran Anh Le Coordinator
14/09/2018 at 07:06
-
Alone 14/09/2018 at 16:17
Because \(\dfrac{12x}{25}\) is a square number but 12=22.3
So \(x⋮25\) and x smallest so x=3.25=75
Selected by MathYouLike
-
I solved the first way for you.This is the second way :
We have :\(x^2-5x+4=0\Rightarrow a=1;b=-5;c=4\)
\(\Rightarrow b^2-4ac=25-16=9>0\)\(\Rightarrow\sqrt{b^2-4ac}=3\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5+3}{2}=4\\x=\dfrac{5-3}{2}=1\end{matrix}\right.\)
Summer Clouds selected this answer. -
Nguyễn Thị Thu Thủy 19/05/2017 at 20:34
I solved the first way for you.This is the second way :
We have :x2−5x+4=0⇒a=1;b=−5;c=4
⇒b2−4ac=25−16=9>0⇒√b2−4ac=3
⇒⎡⎢ ⎢⎣x=5+32=4x=5−32=1
-
\(2^{51}-1=2^{3.17}-1=8^{17}-1=\left(8-1\right).\left[\left(8^{17-1}\right)+\left(8^{17-2}\right)+...+\left(8^{17-16}\right)+8^{17-17}\right]\) is divisible by 7.
-
Let n be the number of sides of the regular polygon\(\left(n\in N;n\ge3\right)\),then the measure of each interior angle is \(\dfrac{180\left(n-2\right)}{n}\) and the measure of each exterior angle is \(180-\dfrac{180\left(n-2\right)}{n}\).We have :
\(\dfrac{180\left(n-2\right)}{n}=8\left(180-\dfrac{180\left(n-2\right)}{n}\right)\)
\(\Leftrightarrow\dfrac{180\left(n-2\right)}{n}-1440+8.\dfrac{180\left(n-2\right)}{n}=0\)
\(\Leftrightarrow9.\dfrac{180\left(n-2\right)}{n}=1440\Leftrightarrow\dfrac{9\left(n-2\right)}{n}=8\Rightarrow9n-18=8n\Leftrightarrow n=18\)
So,the polygon has 18 sides
Selected by MathYouLike
-
WhySoSerious 16/08/2017 at 16:06
\(75+12+43+25+88+50+57\)
\(=\left(75+25\right)+\left(12+88\right)+\left(43+57\right)+50\)
\(=100+100+100+50=350\)
Selected by MathYouLike -
AL 16/08/2017 at 16:06
\(75+12+43+25+88+50+57\)
\(=\left(75+25\right)+\left(12+88\right)+\left(43+57\right)+50\)
\(=100+100+100+50\)
\(=300+50=350\)
-
Thanh Trà love Vương Tuấn Khải _ Tfboys 17/08/2017 at 10:24
75 + 12 + 43 + 25 + 88 + 50 + 57
= ( 75 + 25 ) + ( 43 + 57 ) + ( 12 + 88 ) + 50
= 100 + 100 + 100 + 50
= 300 + 50
= 350