Mr Puppy
14/07/2018 at 06:21
-
Cristiano Ronaldo 04/08/2018 at 01:31
In the song "Golden Love", the author of "Do not separate each other" do what?
Answer: Make ashes
Bookname selected this answer.
-
Nễu Lả Ánh 24/03/2017 at 17:36
We have B=256+4910112−912=176+4912112−192
=5118+81812112−11412
=598712
=59.127.8=17714
Ans : B=17714.
-
♫ ♪ ♥► EDM Troop ◄♥ ♪ ♫ 23/03/2017 at 11:34
\(D=-\dfrac{1}{7}\left(9\dfrac{1}{2}-9,75\right):\dfrac{2}{7}+0,625:1\dfrac{2}{3}\)
\(=\left(-1\right).\dfrac{1}{7}:\dfrac{2}{7}.\left(9,5-9,75\right)+\dfrac{5}{8}:\dfrac{5}{3}\)
\(=-\dfrac{1}{2}.\left(-0,25\right)+\dfrac{3}{8}\)
\(=\dfrac{1}{2}+\dfrac{3}{8}=\dfrac{4+3}{8}=\dfrac{7}{8}\)
-
♫ ♪ ♥► EDM Troop ◄♥ ♪ ♫ 23/03/2017 at 11:31
\(C=1\dfrac{5}{18}:\dfrac{5}{18}\left(\dfrac{1}{15}+1\dfrac{1}{12}\right)\)
\(=\dfrac{23}{18}:\dfrac{5}{18}:\left(\dfrac{1}{15}+\dfrac{13}{12}\right)\)
\(=\dfrac{23}{5}:\dfrac{23}{20}=\dfrac{20}{5}=4\)
-
The edge of the square is : \(\sqrt{9}=3\) (cm)
Hence,the diagonal OH of the square or the radius of the semicircle is \(3\sqrt{2}\)cm.
The area of the semicircle is : \(\dfrac{\left(3\sqrt{2}\right)^2\pi}{2}=9\pi\)(cm2)
Selected by MathYouLike -
Nguyễn Thị Thu Thủy 19/05/2017 at 20:35
The edge of the square is :
√9=3 (cm)
Hence,the diagonal OH of the square or the radius of the semicircle is 3√2cm.
The area of the semicircle is : (3√2)2π2=9π(cm2)
-
Lufans 21/07/2017 at 20:21
x + y = 1 <=> y = 1 - x
We have: F = x2 + (1 - x)2 + (1 - x).x
= x2 + 1 + x2 - 2x + x - x2
= x2 - x + 1
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Equal signs occur when and only of \(x-\dfrac{1}{2}=0\) \(\Leftrightarrow x=\dfrac{1}{2}\)
\(y=1-\dfrac{1}{2}=\dfrac{1}{2}\)
min A \(=\dfrac{1}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)
Selected by MathYouLike -
keikoluong 20/07/2017 at 23:09
x+y=1 \(\Rightarrow\)\(x^2+2xy+y^2=1\)\(\left(1\right)\)
which \(\left(x-y\right)^2\ge0\) else \(x^2-2xy+y^2\ge0\left(2\right)\)
plus 1 and 2 we have \(2\left(x^2+y^2\right)\ge1\Rightarrow x^2+y^2\ge\dfrac{1}{2}\)
minA=\(\dfrac{1}{2}\) When and only when x = y = \(\dfrac{1}{2}\)
-
WhySoSerious 08/08/2017 at 14:35
Because the y value double the x value so : \(y=2x\)
So the function is equal \(2x=3x+6\)
We get x = -6.
So we get y = \(2\cdot\left(-6\right)=-12\)
At the point \(\left(-6;-12\right)\)the y-value double the x-value.
Selected by MathYouLike -
Let \(\left(x_0;2x_0\right)\) be the coordinates of the point. Since the point belongs to the graph of the function y = 3x + 6,we have :
\(2x_0=3x_0+6\Leftrightarrow x_0=-6\Leftrightarrow2x_0=-12\)
So,the satisfied point is (-6 ; -12)
-
Apply Cauchy inequality , we have :
\(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}=\dfrac{4}{5}\left(x+y\right)+\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)\)
\(P\ge\dfrac{4}{5}.10+2.\sqrt{\dfrac{6x}{5}.\dfrac{30}{x}}+2.\sqrt{\dfrac{y}{5}.\dfrac{5}{y}}=8+6+2=16\)
So \(Min_P=16\)
<=> x = y = 5
Selected by MathYouLike -
That is my question ok : https://e-learning.codienhanoi.edu.vn/questions/1902.html
Searching before asking , ok cheater :V
-
Help you solve math 16/08/2017 at 15:54
P=4/5(x+y)+(6/5x+30/x)+(y/5+5/y)≥45.10+2√6/5x.30/x+2√y/5.5/y
=8+12+2=22=8+12+2=22
minP=22⇔x=y=5⇔x=y=5
-
Dao Trong Luan 30/08/2017 at 17:42
\(x^2+2x+3\)
\(=x^2+2x+1+2\)
\(=\left(x+1\right)^2+2\)
We have:
\(\left(x+1\right)^2⋮x+1\)
\(\Rightarrow2⋮x+1\)
\(\Rightarrow x+1\in\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x\in\left\{-2;0;-3;1\right\}\)
So when x = -2; x = 0; x = -3 or x = 1
=> \(x^2+2x+3⋮x+1\)
The word "Prove that" is wrong
Lê Quốc Trần Anh selected this answer.
-
→இے๖ۣۜBoy™†hïếuGîa 16/09/2017 at 13:38
Let p, n, d, q be the number of pennies, nickels, dimes, quarters we need to make 67 cents respectively (p,n,d,q∈Z+p,n,d,q∈Z+), then p + 5n + 10d + 25q = 67
-
Phan Minh Anh 20/09/2017 at 11:57
The answer is 13
-
Let p, n, d, q be the number of pennies, nickels, dimes, quarters we need to make 67 cents respectively (\(p,n,d,q\in Z^+\)), then p + 5n + 10d + 25q = 67
We have :
(q ; d ; n ; p) = (2 ; 1 ; 1 ; 2) ; (1 ; 3 ; 2 ; 2) ; (1 ; 3 ; 1 ; 7) ;
(1 ; 2 ; 4 ; 2) ; (1 ; 2 ; 3 ; 7) ; (1 ; 2 ; 2 ; 12) ; (1 ; 2 ; 1 ; 17)
(1 ; 1 ; 6 ; 2) ; (1 ; 1 ; 5 ; 7) ; (1 ; 1 ; 4 ; 12) ; (1 ; 1 ; 3 ; 17) ;
(1 ; 1 ; 2 ; 22) ; (1 ; 1 ; 1 ; 27)
So, the answer is 13