-
An Duong 17/04/2017 at 09:01
42 = 2 x 3 x 7
85! = 1 . 2 . 3 ... 85
85! has 12 factors \(⋮7\), including: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84.
Among these factors, 47 = 7 . 7. So 85! has 13 factors \(⋮\) 7. So k = 13
-
Nhat Lee 16/04/2017 at 17:04
85!=1 x 2 x 3 x ... x 84 x 85
42=2 x 3 x7
85! has 42 numbers \(⋮\)2
______28 _______ \(⋮\)3
______12________\(⋮\)7
=> k=12.
-
Draw the altitudes as shown
\(\Delta ABD,\Delta ADC\) have the common altitude AH and the bases BD = DC,so \(S_{\Delta ABD}=S_{\Delta ADC}\)
\(\Delta IBD,\Delta IDC\) have the common altitude IK and the bases BD = DC,so \(S_{\Delta IBD}=S_{\Delta IDC}\)
\(\Rightarrow S_{\Delta ABD}-S_{\Delta IBD}=S_{\Delta ADC}-S_{\Delta IDC}\Rightarrow S_{\Delta AIB}=S_{\Delta AIC}\)
\(\Delta AIE,\Delta AIC\) have the common altitude IN and the bases \(AE=\dfrac{1}{3}AC\),so \(S_{\Delta AIE}=\dfrac{1}{3}S_{\Delta AIC}=\dfrac{1}{3}S_{\Delta AIB}\)
\(\Rightarrow\dfrac{S_{\Delta AIE}}{1}=\dfrac{S_{\Delta AIB}}{3}=\dfrac{S_{\Delta AIE}+S_{\Delta AIB}}{1+3}=\dfrac{S_{\Delta ABE}}{4}\)
\(\Rightarrow\dfrac{S_{\Delta AIE}}{S_{\Delta ABE}}=\dfrac{1}{4}\)
\(\Delta ABE,\Delta ABC\) have the common altitude BM and the bases \(AE=\dfrac{1}{3}AC\),so \(\dfrac{S_{\Delta ABE}}{S_{\Delta ABC}}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{S_{\Delta AIE}}{S_{\Delta ABE}}\times\dfrac{S_{\Delta ABE}}{S_{\Delta ABC}}=\dfrac{1}{4}\times\dfrac{1}{3}\Rightarrow\dfrac{S_{\Delta AIE}}{S_{\Delta ABC}}=\dfrac{1}{12}\)
Selected by MathYouLike
-
Aim Egst 19/07/2017 at 14:34
surf before ask Câu hỏi của Mai Nguyễn Bảo Ngọc - Toán lớp 8 | Học trực tuyến
Kantai Collection selected this answer. -
A = (x2 + y2)3 + (z2 - x2)3 - (y2 + z2)3
A = [(x2 + y2) + (z2 - x)2]3 + 3.(x2 + y2).(z2 - x2).(x2 + y2 + z2 - x2) - (y2 + z2)3
A = (y2 + z2)3 + 3.(x2 + y2).(x + z)(z - x).(y2 + z2) - (y2 + z2)3
A = 3.(x2 + y2).(x + z)(z - x).(y2 + z2)
-
Nguyễn Huy Thắng 19/07/2017 at 14:37
Kayasari Ryuunosuke:Congratulation!! You're wrong
-
Since 5! = 1.2.3.4.5 = 10.3.4, 5! ends by 0 and 6!, 7!, 8!,..., 2014! both end by 0. We have :
\(1!+2!+3!+...+2014!\equiv1+2+6+24+0\)
\(\equiv33\equiv3\) (mod 10)
So, the answer is 3
Lê Quốc Trần Anh selected this answer.
-
Tô Sơn 31/08/2017 at 16:23
Nối A,B,C. Suy ra AC=12cm
Gọi N là tiếp điểm 2 đường tròn suy ra AN=6cm
Sử dụng Pytagor
Suy ra Bán kính r của đường tròn nhỏ là 2cm
-
Cut in half so 72/2=36 is the diameters of two circles.
Sum of the areas : \(2S=\dfrac{d^2}{4}\cdot3,14\cdot2=2034,72\left(cm^2\right)\)
Answer : 2034,72 \(cm^2\).
Selected by MathYouLike
-
From the question, we deduce that the third term is 36. The remaining terms are :
\(36:\left(1.5\right)^2=16\)
\(36:1.5=24\)
\(36\times1.5=54\)
\(36\times\left(1.5\right)^2=81\)
The answer is : \(\dfrac{16+24+36+54+81}{5}=42.2\)
Selected by MathYouLike
-
\(\left\{{}\begin{matrix}a\le a^2\\b\le b^2\\c\le c^2\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge a+b+c\ge abc\)
So \(a^2+b^2+c^2\ge abc\)
Monster girls selected this answer.