MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Questions ( 1365 )
  • Prove that:

    \(1< \dfrac{6}{15}+\dfrac{6}{16}+...+\dfrac{6}{19}< 2\)

  • Prove that:

    \(\dfrac{7}{12}< \dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{40}< \dfrac{5}{6}\)

  • Prove that:

    \(\dfrac{1}{2}< \dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< 1\)

  • Find \(x\in Z\):

    \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\)

  • Find \(x\in Z\) :

    \(\dfrac{-x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+1}{6}=\dfrac{8}{3}\)

  • Calculate:

    \(-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}-\dfrac{1}{3^{101}}\)

  • Calculate:

    \(\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{999}}{\dfrac{1}{1.999}+\dfrac{1}{3.997}+...+\dfrac{1}{997.3}+\dfrac{1}{999.1}}\)

  • Calculate:

    \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)

  • How many fractions have the structure \(\dfrac{a}{11}\) satisfy this operation: \(0\le\dfrac{a}{11}\le99.\)

     

  • Calculate:

    \(C=\dfrac{8-\dfrac{8}{5}+\dfrac{8}{25}-\dfrac{8}{125}}{9-\dfrac{9}{5}+\dfrac{9}{25}-\dfrac{9}{125}}:\dfrac{161616}{151515}\)

  • Compact:

    \(\dfrac{2^2.3^2.4^2.5^2}{28800}\)

  • We have:

    \(P=\dfrac{4n+1}{2n+3}\) . Find \(n\) so that \(P\) is a natural number.

  • Calculate:

    \(\dfrac{2}{7}-\left(\dfrac{3}{8}+\dfrac{9}{7}\right)\)

  • Prove that:

    \(\dfrac{99}{100}>\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>\dfrac{99}{202}\)

  • We have:

    \(P=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{\left(2n+1\right)\left(2n+3\right)}\)

    Prove that: \(P< 1,\forall n>0\)

  • Prove that:

    \(\dfrac{7x-21}{14x-42}=\dfrac{2}{4}\)

  • Find the suitable \(x\in N\) satisfy this fraction as a natural number:

    \(\dfrac{2n+8}{n+2}\)

  • How many numbers \(x\) divided by 11 satisfy this equation:

    \(999\le x\le1111\)

  • Prove that:

    \(\dfrac{12n+1}{30n+2}:d\) \(\left(d=1\right)\)

  • Prove that:

    \(\dfrac{9}{10!}+\dfrac{9}{11!}+...+\dfrac{9}{1000!}< \dfrac{1}{9!}\)

  • First
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM