MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Questions ( 1366 )
  • Give \(B=\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{96}=\dfrac{a}{b}\). Prove that: \(a⋮97\)

  • Prove that:

    \(\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+...+\dfrac{1}{101}\notin N\)

  • Find x:

    \(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\left(x+1\right):2}=1\dfrac{1991}{1993}\)

  • The sum \(\dfrac{1}{50}+\dfrac{1}{51}+...+\dfrac{1}{99}=\dfrac{a}{b}\). Prove that: \(a⋮149\)

  • Give \(A=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\),prove that: \(A\notin N\)

  • Calculate:

    \(1^2+2^2+3^2+...+98^2\)

  • Find the product of 98 first number in this series:

    \(1\dfrac{1}{3};1\dfrac{1}{8};1\dfrac{1}{15};1\dfrac{1}{24};...\)

  • Calculate:

    \(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}{\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}}\)

  • Calculate:

    \(\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)

  • Calculate:

    \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{37.38.39}\)

  • Calculate:

    \(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\)

  • The bottom of a triangle increases 20%, the height decreases 20%. The area:

    A. Don't change

    B. Increases 4%

    C. Decreases 4%

    D. Decreases 10%

  • The side of a cube increases 50%. It's volume increases:

    A. 50%

    B. 100%

    C. 237,5%

    D. 125%

  • The side of a square increases 20%. It's area increases:

    A. 144%

    B. 40%

    C. 80%

    D. 44%

  • Calculate:

    \(C=10101.\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3.7.11.13.17}\right)\)

  • Prove that these fractions can be written by the sum of the fractions that had the numberator 1, the denominator \(\ge0\) and different:

    \(\dfrac{1}{6}\);\(\dfrac{15}{22}\) and \(\dfrac{5}{11}\)

  • Find \(x,y\in Z\):

    \(\dfrac{x}{6}-\dfrac{2}{y}=\dfrac{1}{30}\)

  • Find \(x,y\in Z\):

    \(\dfrac{5}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)

  • Find \(x,y\in N\):

    \(\dfrac{4}{x}+\dfrac{y}{3}=\dfrac{5}{6}\)

  • Find \(x,y\in N\):

    \(\dfrac{x}{3}-\dfrac{4}{y}=\dfrac{1}{5}\)

  • First
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM