MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Questions ( 1366 )
  • Find a,b,c \(\left(a,b,c\ne\right)\) so that:

    \(a,bc:\left(a+b+c\right)=0,25\)

  • Find a,b such that:

    \(\dfrac{a}{2}+\dfrac{b}{3}=\dfrac{a+b}{2+3}\)

  • Calculate:

    \(\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}...\dfrac{2499}{2500}\)

  • Calculate:

    \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)\left(1-\dfrac{1}{15}\right)...\left(1-\dfrac{1}{780}\right)\)

  • Calculate:

    \(\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\right):\left(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)

  • Prove that:

    \(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)

  • Calculate \(\dfrac{A}{B}\) :

    \(A=\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{200}\)

    \(B=\dfrac{1}{199}+\dfrac{2}{198}+...+\dfrac{198}{2}+\dfrac{199}{1}\)

  • Calculate:

    \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)

  • Find the value of x:

    \(\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)

  • Prove that the sum of 100 fraction in the series is smaller than \(\dfrac{1}{4}\):

    \(\dfrac{1}{5},\dfrac{1}{45},\dfrac{1}{117}...\)

  • Calculate \(\dfrac{A}{B}\) :

    \(A=\dfrac{1}{1.300}+\dfrac{1}{2.301}+...+\dfrac{1}{101.400}\)

    \(B=\dfrac{1}{1.102}+\dfrac{1}{2.103}+...+\dfrac{1}{299.400}\)

  • Compact: 

    \(\dfrac{121212}{424242}\) ; \(\dfrac{187187187}{221221221}\) and \(\dfrac{3.7.13.37.39-10101}{505050+70707}\)

  • Calculate:

    \(181-\left\{-85+\left[220+\left(-65-35\right)\right]\right\}\)

  • Find 2 fractions have their denominator are 21 satisfy: \(\dfrac{-5}{6}< \dfrac{x}{21}< \dfrac{-5}{7}\)

  • Use all ten digits from 0 to 9, write:

    + The smallest number divisible by 4.

    + The biggest number divisible by 4.

  • Prove that: \(2^{100}\) is a number that has 31 digits when we write the number in decimal system.

     

  • When we write the result of \(4^{50}and25^{50}\) continuously, we get a number that has how many digits?

  • Find x satisfy:

    \(\dfrac{4}{11}< \dfrac{x}{20}< \dfrac{5}{11}\)

  • Compare:

    \(\dfrac{10^7+5}{10^7-8}and\dfrac{10^8+6}{10^8-7}\)

  • Compare:

    \(\dfrac{3}{8^3}+\dfrac{7}{8^4}and\dfrac{7}{8^3}+\dfrac{3}{8^4}\)

  • First
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM