-
See question detail
This is a global website and you must write in common languague : English.
All problem in Math in Vietnamese must be translate in English before posting in this website.
Please pay attention and do better next time !
Thanks :))
-
See question detail
The expression is determined with all \(x\in R\)
\(\Leftrightarrow3\left(x^2+x+3\right)-\sqrt{x^2+x+3}-24=0\)
Let \(\sqrt{x^2+x+3}=a>0\Rightarrow3a^2-a-24=0\Leftrightarrow\left(a-3\right)\left(3a+8\right)=0\)
\(\Leftrightarrow a=3\left(cause:3a+8>0\right)\)
So the expression is equal : \(\sqrt{x^2+x+3}=3\)
\(\Leftrightarrow x^2+x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
So the expression has two solutions : x = 2 ; x = -3.
-
See question detail
The degree measure of the largest angle of the triangle is \(78^o\)
The triple measure angles are : \(42^o;60^o;78^o\)
-
See question detail
This problem is easy we start :
Note : \(3x^2+6x+7=3\left(x^2+2x+1\right)+4=3\left(x+1\right)^2+4\Rightarrow\sqrt{3x^2+6x+7}\ge2\)
\(5x^2+10x+14=5\left(x^2+2x+1\right)+9=5\left(x+1\right)^2+9\Rightarrow\sqrt{5x^2+10x+14}\ge3\)
So the left side of the expression \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\ge5\)
Come to the right side : \(4-2x-x^2=5-\left(x^2+2x+1\right)=5-\left(x+1\right)^2\le5\)
The thread \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=5\\4-2x-x^2=5\end{matrix}\right.\Leftrightarrow x=-1\)
So the expression has the only solution x = -1.
-
See question detail
Condition : \(0\le x\le1;x\ne\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{\left(6x-3\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{2x-1}=3+2\sqrt{x-x^2}\)
\(\Leftrightarrow3\cdot\left(\sqrt{x}+\sqrt{1-x}\right)=x+2\sqrt{x\left(1-x\right)}+\left(1-x\right)+2\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{1-x}\right)^2-3\left(\sqrt{x}+\sqrt{1-x}\right)+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x\left(1-x\right)}=0\\4x^2-4x+9=0\left(no-solution\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) So the expression has two solutions : x = 0; x = 1.
-
See question detail
The expression is determined with all \(x\in R\)
\(\Leftrightarrow x^2+1+3x-x\sqrt{x^2+1}-3\sqrt{x^2+1}=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-x\sqrt{x^2+1}+3x-3\sqrt{x^2+1}=0\)
\(\Leftrightarrow\sqrt{x^2+1}\left(\sqrt{x^2+1}-x\right)-3\left(\sqrt{x^2+1}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x^2+1}-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x\left(not-satisfy\right)\\\sqrt{x^2+1}=3\end{matrix}\right.\Leftrightarrow x=\pm2\sqrt{2}\)
-
See question detail
1) \(x^3-25x=0\)
\(\Leftrightarrow x\cdot\left(x^2-25\right)=0\)
\(\Rightarrow x\cdot\left(x-5\right)\cdot\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
2) \(2x\left(x-1\right)-3x+3=0\)
\(\Leftrightarrow2x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1,5\\x=1\end{matrix}\right.\)
3) \(x^2-36+\left(x^2-12x+36\right)=0\)
\(\Leftrightarrow x^2-36+\left(x-6\right)^2=0\)
\(\Leftrightarrow\left(x-6\right)\cdot\left(x+6\right)+\left(x-6\right)^2=0\)
\(\Leftrightarrow\left(x-6\right)\cdot\left[\left(x+6\right)+\left(x-6\right)\right]=0\)
\(\Leftrightarrow\left(x-6\right)\cdot2x=0\)
\(\Rightarrow\left[{}\begin{matrix}x-6=0\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=0\end{matrix}\right.\)
-
See question detail
I have another way more logical than Phan Thanh Tinh's answer ! :)
Here it is :
\(x^2+2005x+2006y^2+y=xy+2006xy^2+2007\)
\(\Leftrightarrow\left(x^2+2005x-2006\right)+\left(2006y^2-2006xy^2\right)+\left(y-xy\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(x+2006\right)-2006y^2\left(x-1\right)-y\left(x-1\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(x+2006-2006y^2-y\right)=1\) (1)
Cause x,y are interger numbers so 2 factors on the left side of expression (1) is divisor of 1.
So it occurs two cases :
Case 1 : \(\left\{{}\begin{matrix}x-1=1\left(2\right)\\x+2006-2006y^2-y=1\left(3\right)\end{matrix}\right.\)
From (2) -> x = 2.
(3) \(\Leftrightarrow2006y^2+y-2007=0\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-\dfrac{2007}{2006}\notin Z\end{matrix}\right.\)
So (x;y) = (2;1).
Case 2 : \(\left\{{}\begin{matrix}x-1=-1\left(4\right)\\x+2006-2006y^2-y=-1\left(5\right)\end{matrix}\right.\)
From (4) => x = 0.
(5) \(\Leftrightarrow2006y^2+y-2007=0\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-\dfrac{2007}{2006}\notin Z\end{matrix}\right.\)
So (x;y) = (0;1).
So the expression has two pairs of interger numbers (x;y) are (2;1) and (0;1).
-
See question detail
This is a good and hard problem, I have a way to solve this but it's not mine :)
Here it is :
We know that
(where
,
, and
are the hundreds, tens, and ones digit respectively)
Case 1:
We can use the kids and candy method (a.k.a. stars and bars, ss and stones etc.) method which is denoted bywhere
stands for the amount of kids (in this case, its the
variables) and
stands for
the number of candies. (in this case, it's the overall sum, which is) Substituting, we get
ways to have
numbers sum up to
. We can use the kids and candy technique in the other cases. We just have to substitute the correct values.
Case 2:
ways for
numbers to sum up to
.
Case 3:
ways of
numbers to sum up to
.
Case 4:
ways of
numbers to sum up to
.
Case 5:
ways of
numbers to sum up to
.
Now we just add up all the cases to find the answer asnumbers that meet the criteria.
-
See question detail
We have : \(LCM\left(8;5;10\right)=40\)
So he will take the medicines together forty hours afterwards or one day and 16 hours.
That will be at 11 p.m on Wednesday.
-
See question detail
Okay :0
\(999999\cdot222222=2,222217778\times_{10^{11}}\)
Minus \(2\times10^{11}\) we have \(2,222177778\times_{10^{10}}\)
Minus \(2\times10^{10}=221777778\)
So \(999999\cdot222222=222221777778\)
Next : \(333333\cdot333334=1,111112222\times_{10^{11}}\)
Do as upper we have answer : \(333333\cdot333334=111111222222\)
So \(999999\cdot222222+333333\cdot333334=222221777778+111111222222=333333000000\)
-
See question detail
From A to B, we can see that the way go by side (not go inside) is equal :
14+6+17+12=15+7+9+18 (=49km).
From A to midpoint we have two way are : 15 + 11 (=26km) and 14+13(=27km)
From midpoint to B we have two way are 10 + 12 (= 22km) and 5+18(=23km).
So the shortest way from A to midpoint to B is 15+11+10+12 (=48km).
Compare the way from A to midpoint to B with the way go by side : 48 < 49.
So the shortest distance from A to B is 48 km.
-
See question detail
Call the price of large is x, the price of small is y.
We have : \(\left\{{}\begin{matrix}7x+4y=100\\5x+6y+5=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x+4y=100\\5x+6y=95\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\y=7,5\end{matrix}\right.\)
So a small exercise book costs 7,5$.
-
See question detail
\(T=\dfrac{1}{1\cdot2}+\dfrac{5}{2\cdot3}+\dfrac{11}{3\cdot4}+...+\dfrac{89}{9\cdot10}\)
\(T=\left(1-\dfrac{1}{1\cdot2}\right)+\left(1-\dfrac{1}{2\cdot3}\right)+\left(1-\dfrac{1}{3\cdot4}\right)+...+\left(1-\dfrac{1}{9\cdot10}\right)\)
\(T=9-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\)
\(T=9-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(T=9-\left(\dfrac{1}{1}-\dfrac{1}{10}\right)=9-\dfrac{9}{10}=\dfrac{81}{10}\)
-
See question detail
Call the number is n.
We have : \(n=342q+47\)
\(\Leftrightarrow n=19\cdot18q+19\cdot2+9=19\cdot\left(18q+2\right)+9\)
So when divide 19 the remainder would be 9.
-
See question detail
Call the radius of center circle A is AO, B is BI.
We have AO + BI = 2 + 2 = 4 (cm).
<=> AO + BI - OI = AB = 4 - (2:2) = 4 - 1 = 3 (cm).
That's my idea :((
-
See question detail
Okay :0
\(\dfrac{501}{2015}=\dfrac{1}{\dfrac{2015}{501}}=\dfrac{1}{4+\dfrac{11}{501}}=\dfrac{1}{4+\dfrac{1}{\dfrac{501}{11}}}=\dfrac{1}{4+\dfrac{1}{45+\dfrac{6}{11}}}=\dfrac{1}{4+\dfrac{1}{45+\dfrac{1}{\dfrac{11}{6}}}}=\dfrac{1}{4+\dfrac{1}{45+\dfrac{1}{1+\dfrac{5}{6}}}}=\dfrac{1}{4+\dfrac{1}{45+\dfrac{1}{1+\dfrac{1}{\dfrac{6}{5}}}}}=\dfrac{1}{4+\dfrac{1}{45+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{5}}}}}\)
So (a;b;c;d;e) = (4;45;1;1;5)
-
See question detail
Let \(\dfrac{X+Y}{X-Y}_{MAX}\) so X-Y must in range 1 - the minimum range (X-Y mustn't in range 0 because it is denominator).
So from 1 to 40 we can choose \(\left\{{}\begin{matrix}X=21\\Y=20\end{matrix}\right.\Leftrightarrow\dfrac{X+Y}{X-Y}=\dfrac{21+20}{21-20}=\dfrac{41}{1}=41\)
So the largest value that \(\dfrac{X+Y}{X-Y}\) can have is 41.
-
See question detail
Cause \(\overline{3AA1}⋮9\)
So \(\left(3+2A+1\right)⋮9\Leftrightarrow\left(4+2A\right)⋮9\)
And \(0\le A\le9\) (Cause A is a number which can be represented in a four-digit number).
Make a table and do calculating we have A represent the number 7 which \(\left(4+2\cdot7\right)=18⋮9\)
So the digit that A represents is 7.
-
See question detail
Power of 2, 2 in alone version ?
\(P=4+2^2+2^3+2^4+....+2^{20}\)
\(2P=8+2^3+2^4+2^5+...+2^{21}\)
\(\Rightarrow2P-P=P=\left(8+2^3+2^4+2^5+...+2^{21}\right)-\left(4+2^2+2^3+2^4+...+2^{20}\right)=\left(8+2^{21}\right)-\left(4+2^2\right)=8+2^{21}-8=2^{21}\)
So P can be be written as a power of 2 and write \(P=2^{21}\)