MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 199 )
  • See question detail

    This is a global website and you must write in common languague : English.

    All problem in Math in Vietnamese must be translate in English before posting in this website.

    Please pay attention and do better next time !

    Thanks :))

  • See question detail

    The expression is determined with all \(x\in R\)

    \(\Leftrightarrow3\left(x^2+x+3\right)-\sqrt{x^2+x+3}-24=0\)

    Let \(\sqrt{x^2+x+3}=a>0\Rightarrow3a^2-a-24=0\Leftrightarrow\left(a-3\right)\left(3a+8\right)=0\)

    \(\Leftrightarrow a=3\left(cause:3a+8>0\right)\)

    So  the expression is equal : \(\sqrt{x^2+x+3}=3\)

    \(\Leftrightarrow x^2+x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

    So the expression has two solutions : x = 2 ; x = -3.

  • See question detail

    The degree measure of the largest angle of the triangle is \(78^o\)

    The triple measure angles are : \(42^o;60^o;78^o\)

  • See question detail

    This problem is easy we start : 

    Note : \(3x^2+6x+7=3\left(x^2+2x+1\right)+4=3\left(x+1\right)^2+4\Rightarrow\sqrt{3x^2+6x+7}\ge2\)

    \(5x^2+10x+14=5\left(x^2+2x+1\right)+9=5\left(x+1\right)^2+9\Rightarrow\sqrt{5x^2+10x+14}\ge3\)

    So the left side of the expression \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\ge5\)

    Come to the right side : \(4-2x-x^2=5-\left(x^2+2x+1\right)=5-\left(x+1\right)^2\le5\)

    The thread \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=5\\4-2x-x^2=5\end{matrix}\right.\Leftrightarrow x=-1\)

    So the expression has the only solution x = -1.

  • See question detail

    Condition : \(0\le x\le1;x\ne\dfrac{1}{2}\)

    \(\Leftrightarrow\dfrac{\left(6x-3\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{2x-1}=3+2\sqrt{x-x^2}\)

    \(\Leftrightarrow3\cdot\left(\sqrt{x}+\sqrt{1-x}\right)=x+2\sqrt{x\left(1-x\right)}+\left(1-x\right)+2\)

    \(\Leftrightarrow\left(\sqrt{x}+\sqrt{1-x}\right)^2-3\left(\sqrt{x}+\sqrt{1-x}\right)+2=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x\left(1-x\right)}=0\\4x^2-4x+9=0\left(no-solution\right)\end{matrix}\right.\)

    \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) So the expression has two solutions : x = 0; x = 1.

  • See question detail

    The expression is determined with all \(x\in R\)

    \(\Leftrightarrow x^2+1+3x-x\sqrt{x^2+1}-3\sqrt{x^2+1}=0\)

    \(\Leftrightarrow\left(x^2+1\right)^2-x\sqrt{x^2+1}+3x-3\sqrt{x^2+1}=0\)

    \(\Leftrightarrow\sqrt{x^2+1}\left(\sqrt{x^2+1}-x\right)-3\left(\sqrt{x^2+1}-x\right)=0\)

    \(\Leftrightarrow\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x^2+1}-3\right)=0\)

    \(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x\left(not-satisfy\right)\\\sqrt{x^2+1}=3\end{matrix}\right.\Leftrightarrow x=\pm2\sqrt{2}\)

  • See question detail

    1) \(x^3-25x=0\)

    \(\Leftrightarrow x\cdot\left(x^2-25\right)=0\)

    \(\Rightarrow x\cdot\left(x-5\right)\cdot\left(x+5\right)=0\)

    \(\Rightarrow\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

    2) \(2x\left(x-1\right)-3x+3=0\)

    \(\Leftrightarrow2x\left(x-1\right)-3\left(x-1\right)=0\)

    \(\Leftrightarrow\left(2x-3\right)\left(x-1\right)=0\)

    \(\Rightarrow\left[{}\begin{matrix}2x-3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1,5\\x=1\end{matrix}\right.\)

    3) \(x^2-36+\left(x^2-12x+36\right)=0\)

    \(\Leftrightarrow x^2-36+\left(x-6\right)^2=0\)

    \(\Leftrightarrow\left(x-6\right)\cdot\left(x+6\right)+\left(x-6\right)^2=0\)

    \(\Leftrightarrow\left(x-6\right)\cdot\left[\left(x+6\right)+\left(x-6\right)\right]=0\)

    \(\Leftrightarrow\left(x-6\right)\cdot2x=0\)

    \(\Rightarrow\left[{}\begin{matrix}x-6=0\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=0\end{matrix}\right.\)

  • See question detail

    I have another way more logical than Phan Thanh Tinh's answer ! :)

    Here it is : 

    \(x^2+2005x+2006y^2+y=xy+2006xy^2+2007\)

    \(\Leftrightarrow\left(x^2+2005x-2006\right)+\left(2006y^2-2006xy^2\right)+\left(y-xy\right)=1\)

    \(\Leftrightarrow\left(x-1\right)\left(x+2006\right)-2006y^2\left(x-1\right)-y\left(x-1\right)=1\)

    \(\Leftrightarrow\left(x-1\right)\left(x+2006-2006y^2-y\right)=1\) (1)

    Cause x,y are interger numbers so 2 factors on the left side of expression (1) is divisor of 1.

    So it occurs two cases :

    Case 1 : \(\left\{{}\begin{matrix}x-1=1\left(2\right)\\x+2006-2006y^2-y=1\left(3\right)\end{matrix}\right.\)

    From (2) -> x = 2.

    (3) \(\Leftrightarrow2006y^2+y-2007=0\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-\dfrac{2007}{2006}\notin Z\end{matrix}\right.\)

    So (x;y) = (2;1).

    Case 2 : \(\left\{{}\begin{matrix}x-1=-1\left(4\right)\\x+2006-2006y^2-y=-1\left(5\right)\end{matrix}\right.\)

    From (4) => x = 0.

    (5) \(\Leftrightarrow2006y^2+y-2007=0\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-\dfrac{2007}{2006}\notin Z\end{matrix}\right.\)

    So (x;y) = (0;1).

    So the expression has two pairs of interger numbers (x;y) are (2;1) and (0;1).

  • See question detail

    This is a good and hard problem, I have a way to solve this but it's not mine :)

    Here it is : 

    We know that $5\le x+y+z \le 9$ (where $x$, $y$, and $z$ are the hundreds, tens, and ones digit respectively)

    Case 1: $x+y+z=5$

    We can use the kids and candy method (a.k.a. stars and bars, ss and stones etc.) method which is denoted by $\binom{n+k-1}{k-1}$ where $k$ stands for the amount of kids (in this case, its the $3$ variables) and $n$ stands for
    the number of candies. (in this case, it's the overall sum, which is $5$) Substituting, we get


    $\binom{5+3-1}{3-1}=\binom{7}{2}=21$ ways to have $3$ numbers sum up to $5$. We can use the kids and candy technique in the other cases. We just have to substitute the correct values.

    Case 2: $x+y+z=6$

    $\binom{n+k-1}{k-1}=\binom{6+3-1}{3-1}=\binom{8}{2}=28$ ways for $3$ numbers to sum up to $6$.

    Case 3: $x+y+z=7$

    $\binom{n+k-1}{k-1}=\binom{7+3-1}{3-1}=\binom{9}{2}=36$ ways of $3$ numbers to sum up to $7$.

    Case 4: $x+y+z=8$

    $\binom{n+k-1}{k-1}=\binom{8+3-1}{3-1}=\binom{10}{2}=45$ ways of $3$ numbers to sum up to $8$.

    Case 5: $x+y+z=9$

    $\binom{n+k-1}{k-1}=\binom{9+3-1}{3-1}=\binom{11}{2}=55$ ways of $3$ numbers to sum up to $9$.

    Now we just add up all the cases to find the answer as $21+28+36+45+55=\boxed{185}$ numbers that meet the criteria.

  • See question detail

    We have : \(LCM\left(8;5;10\right)=40\)

    So he will take the medicines together forty hours afterwards or one day and 16 hours.

    That will be at 11 p.m on Wednesday.

  • See question detail

    Okay :0

    \(999999\cdot222222=2,222217778\times_{10^{11}}\)

    Minus \(2\times10^{11}\) we have \(2,222177778\times_{10^{10}}\)

    Minus \(2\times10^{10}=221777778\)

    So \(999999\cdot222222=222221777778\)

    Next : \(333333\cdot333334=1,111112222\times_{10^{11}}\)

    Do as upper we have answer : \(333333\cdot333334=111111222222\)

    So \(999999\cdot222222+333333\cdot333334=222221777778+111111222222=333333000000\)

  • See question detail

    From A to B, we can see that the way go by side (not go inside) is equal :

    14+6+17+12=15+7+9+18 (=49km).

    From A to midpoint we have two way are : 15 + 11 (=26km) and 14+13(=27km)

    From midpoint to B we have two way are 10 + 12 (= 22km) and 5+18(=23km).

    So the shortest way from A to midpoint to B is 15+11+10+12 (=48km).

    Compare the way from A to midpoint to B with the way go by side : 48 < 49.

    So the shortest distance from A to B is 48 km.

  • See question detail

    Call the price of large is x, the price of small is y.

    We have : \(\left\{{}\begin{matrix}7x+4y=100\\5x+6y+5=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x+4y=100\\5x+6y=95\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\y=7,5\end{matrix}\right.\)

    So a small exercise book costs 7,5$.

  • See question detail

    \(T=\dfrac{1}{1\cdot2}+\dfrac{5}{2\cdot3}+\dfrac{11}{3\cdot4}+...+\dfrac{89}{9\cdot10}\)

    \(T=\left(1-\dfrac{1}{1\cdot2}\right)+\left(1-\dfrac{1}{2\cdot3}\right)+\left(1-\dfrac{1}{3\cdot4}\right)+...+\left(1-\dfrac{1}{9\cdot10}\right)\)

    \(T=9-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\)

    \(T=9-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)

    \(T=9-\left(\dfrac{1}{1}-\dfrac{1}{10}\right)=9-\dfrac{9}{10}=\dfrac{81}{10}\)

  • See question detail

    Call the number is n.

    We have : \(n=342q+47\)

    \(\Leftrightarrow n=19\cdot18q+19\cdot2+9=19\cdot\left(18q+2\right)+9\)

    So when divide 19 the remainder would be 9.

  • See question detail

    Call the radius of center circle A is AO, B is BI.

    We have AO + BI = 2 + 2 = 4 (cm).

    <=> AO + BI - OI = AB = 4 - (2:2) = 4 - 1 = 3 (cm).

    That's my idea :((

  • See question detail

    Okay :0

    \(\dfrac{501}{2015}=\dfrac{1}{\dfrac{2015}{501}}=\dfrac{1}{4+\dfrac{11}{501}}=\dfrac{1}{4+\dfrac{1}{\dfrac{501}{11}}}=\dfrac{1}{4+\dfrac{1}{45+\dfrac{6}{11}}}=\dfrac{1}{4+\dfrac{1}{45+\dfrac{1}{\dfrac{11}{6}}}}=\dfrac{1}{4+\dfrac{1}{45+\dfrac{1}{1+\dfrac{5}{6}}}}=\dfrac{1}{4+\dfrac{1}{45+\dfrac{1}{1+\dfrac{1}{\dfrac{6}{5}}}}}=\dfrac{1}{4+\dfrac{1}{45+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{5}}}}}\)

    So (a;b;c;d;e) = (4;45;1;1;5)

  • See question detail

    Let \(\dfrac{X+Y}{X-Y}_{MAX}\) so X-Y must in range 1 - the minimum range (X-Y mustn't in range 0 because it is denominator).

    So from 1 to 40 we can choose \(\left\{{}\begin{matrix}X=21\\Y=20\end{matrix}\right.\Leftrightarrow\dfrac{X+Y}{X-Y}=\dfrac{21+20}{21-20}=\dfrac{41}{1}=41\)

    So the largest value that \(\dfrac{X+Y}{X-Y}\) can have is 41.

  • See question detail

    Cause \(\overline{3AA1}⋮9\)

    So \(\left(3+2A+1\right)⋮9\Leftrightarrow\left(4+2A\right)⋮9\)

    And \(0\le A\le9\) (Cause A is a number which can be represented in a four-digit number).

    Make a table and do calculating we have A represent the number 7 which \(\left(4+2\cdot7\right)=18⋮9\)

    So the digit that A represents is 7.

  • See question detail

    Power of 2, 2 in alone version ?

    \(P=4+2^2+2^3+2^4+....+2^{20}\)

    \(2P=8+2^3+2^4+2^5+...+2^{21}\)

    \(\Rightarrow2P-P=P=\left(8+2^3+2^4+2^5+...+2^{21}\right)-\left(4+2^2+2^3+2^4+...+2^{20}\right)=\left(8+2^{21}\right)-\left(4+2^2\right)=8+2^{21}-8=2^{21}\)

    So P can be be written as a power of 2 and write  \(P=2^{21}\)

  • First
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM