MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 199 )
  • See question detail

    There are \(\dfrac{100-2}{2}+1=50\) (even number) so the sum of 50 even numbers that is 50.

    There are \(\dfrac{99-1}{2}+1=50\)(odd number) so the sum of 50 odd numbers that is -50.

    So the sum of the expression \(50+\left(-50\right)=0\)

  • See question detail

    \(4x^2+3xy-y^2\)

    = \(3x^2+3xy+x^2-y^2\)

    = \(3x\cdot\left(x+y\right)+\left(x-y\right)\cdot\left(x+y\right)\)

    = \(\left(x+y\right)\cdot\left(3x+x-y\right)\)

    = \(\left(x+y\right)\cdot\left(4x-y\right)\)

  • See question detail

    We have : \(AH^2=BH\cdot CH\Leftrightarrow3^2=BH\cdot6\Rightarrow BH=\dfrac{9}{6}=\dfrac{3}{2}\)

    So \(BC=BH+CH=6+\dfrac{3}{2}=7,5\)

    => \(AC^2=7,5\cdot6\Rightarrow AC=3\sqrt{5}\)

    So the area of the triangle ABC is 

    \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot5\cdot3\sqrt{5}=\dfrac{15\sqrt{5}}{2}\)

  • See question detail

    \(S=1+3+3^2+...+3^{50}\)

    \(\Rightarrow3S=3+3^2+3^3+...+3^{50}+3^{51}\)

    \(\Rightarrow3S-S=2S=\left(3+3^2+3^3+...+3^{50}+3^{51}\right)-\left(1+3+3^2+...+3^{50}\right)=3^{51}-1\)

    So \(S=\dfrac{3^{51}-1}{2}\)

  • See question detail

    This is my quesion in Hoc24.vn, cheater :))

    Câu hỏi của Đức Minh - Toán lớp 9 | Học trực tuyến

    You can't take it easily :))

  • See question detail

    Call that number is \(\overline{ab}\)

    Following the thread we have :

    \(\left\{{}\begin{matrix}a+b=\dfrac{\overline{ab}}{6}\\ab+25=\overline{ba}\end{matrix}\right.\)

    Now we just calculate a and b then we'll find the answer :)

    \(\Leftrightarrow\left\{{}\begin{matrix}a+b=\dfrac{10a+b}{6}\\ab+25=10b+a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a+6b=10a+b\\ab+25=10b+a\end{matrix}\right.\)

    \(\Leftrightarrow\left\{{}\begin{matrix}5b=4a\\ab+25=10b+a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{4a}{5}\\a\cdot\dfrac{4a}{5}+25=10\cdot\dfrac{4a}{5}+a\end{matrix}\right.\)

    Solve the second expression we have a = 5.

    So \(b=\dfrac{4a}{5}=\dfrac{4\cdot5}{5}=4\)

    So the number \(\overline{ab}\) is 54.

  • See question detail

    Cause \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

    So we get an example that \(\left\{{}\begin{matrix}x=1\\y=2\\z=-\dfrac{6}{5}\end{matrix}\right.\)(cause \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{-\dfrac{6}{5}}=0\))

    Okay now \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}=\dfrac{2\cdot-\dfrac{6}{5}}{1^2+2\cdot2\cdot\left(-\dfrac{6}{5}\right)}+\dfrac{1\cdot-\dfrac{6}{5}}{2^2+2\cdot1\cdot-\dfrac{6}{5}}+\dfrac{1\cdot2}{\left(-\dfrac{6}{5}\right)^2+2\cdot1\cdot2}\)

    \(A=\dfrac{161}{646}\)

  • See question detail

    MATH Error :v

  • See question detail

    Kaya Renger There is no mistake in the thread.

    You can find the answer in here : Câu hỏi của Đức Minh - Toán lớp 9 | Học trực tuyến

  • See question detail

    The perimeter of the original photo is \(2\cdot\left(8+10\right)=36\left(inches\right)\)

    The area of the original photo is \(8\cdot10=80\left(inches^2\right)\)

    After reduced in size the new perimeter will equal \(\dfrac{27}{36}=\dfrac{3}{4}\) the original perimeter. So each measurements of the new photo will equal \(\dfrac{3}{4}\) the original measurements of the original photo.

    The area of the new photo will equal \(\left(\dfrac{3}{4}\right)^2=\dfrac{9}{16}\) the area of the original photo.

    So the area of the new photo will be \(80\cdot\dfrac{9}{16}=45\left(inches^2\right)\)

  • See question detail

    P/s mình nói tiếng việt tí nhé :))

    Cho hỏi bạn Toàn kia học lớp mấy thế, bài này ko biết làm thì xuống học lại lớp 1 đi bạn :)) đừng hỏi những điều mà ai cũng biết :v

    Hay là bạn "Help you solve math" tự hỏi tự trả lời thế ?

  • See question detail

    \(75+34+43+25+66+57\)

    \(=\left(75+25\right)+\left(43+57\right)+\left(34+66\right)\)

    \(=100+100+100=300\)

  • See question detail

    \(75+12+43+25+88+50+57\)

    \(=\left(75+25\right)+\left(12+88\right)+\left(43+57\right)+50\)

    \(=100+100+100+50=350\)

  • See question detail

    So we start :

    The first person can pick any number from 1 to 10.

    The second person has a chance of 9/10 to pick different number.

    The third person has a chance of 8/10 to pick different number.

    The fourth person has a chance of 7/10 to pick different number.

    The probability that four people pick different numbers is \(1\cdot\dfrac{9}{10}\cdot\dfrac{8}{10}\cdot\dfrac{7}{10}=\dfrac{63}{125}\)

    The probability that at least two of the people pick the same integer is \(1-\dfrac{63}{125}=0,496=49,6\%\)

  • See question detail

    In 32c coin we have 7 combinations :

    32+16+2

    32+8+8+2

    32+8+4+4+2

    32+8+4+2+2+1+1

    32+16+1+1

    32+8+8+1+1

    32+8+4+4+1+1

    In 16c coin we have 5 combinations :

    16+16+8+8+2

    16+16+8+4+4+2

    16+16+8+4+2+2+1+1

    16+16+8+8+1+1

    16+16+8+4+4+1+1

    There are 7+5=12 combinations that have a combined value of 50¢.

  • See question detail

    A survey showed that of 120 secondary school students: 52 of them have a dog, 31 of them have a cat and 19 of them have both.
    How many of the 120 students have neither a dog nor a cat? 
    Answer: 56 students.

    The students have neither a dog or a cat is \(120-52-31+19=56\) students.

  • See question detail

    I found the number that STAR present is \(\overline{STAR}=8712\)

    Cause \(RATS\cdot4=STAR=2178\cdot4=8712\)

    So the value of S+T+A+R is 8 + 7 + 1 + 2 = 18.

  • See question detail

    The chance of winning the draw of bag A is 1/10.

    The chance of winning the draw of bag B is \(1-\left(\dfrac{99}{100}\right)^{20}\)

    The difference is : \(\left(\dfrac{1}{10}-\left(1-\left(\dfrac{99}{100}\right)^{20}\right)\right)=-\dfrac{9}{10}+\dfrac{99}{100}^{20}=0,082\)

  • See question detail

    We have \(x^2-2x+1=\left(x-1\right)^2\)

    We know that x have 11 values, we apply each values into \(\left(x-1\right)^2\) to calculate, we recognize that only 7 elements that 0,1,4,9,16,25,36 are in set.

  • See question detail

    The list that 2, 0, 1 and 4 are used to create is :

    1024 2014 4012
    1042 2041 4021
    1240 2104 4210
    1204 2140 4201
    1402 2401 4102
    1420 2410 4120

    The sum of all numbers is : 45108.

    So the arithmetic mean of all these integers is \(\dfrac{45108}{16}=2506\)

  • First
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM