MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 199 )
  • See question detail
    21 3 10 12 19
    15 24 8 1 17
    4 13 6 20 22
    18 11 25 9 2
    7 14 16 23 5
  • See question detail

    We see that, if x satisfies the equation above => 

    \(-8< 3x+4< -32\) and \(8< 3x+4< 32\)

    So we have \(28\cdot2=56\) possible values of x.

    Solve each equations we will have the exact values of x.

  • See question detail

    \(\sqrt{2+4+6+x}\) (Condition \(-12\le x< 8\)).

    \(\Leftrightarrow\sqrt{12+x}=n\left(n\in N\right)\)

    So x will satisfy \(x=\left\{-12;-11;-8;-3;4\right\}\)

    The sum of \(x=-12-11-8-3+4=-30\)

    Answer : - 30.

  • See question detail

    Call the percent increase is x (%)

    Because the number of participants increase each year study.

    We have equation : 

    \(\left\{{}\begin{matrix}P=40+40\cdot x\%\\P+P\cdot x\%=90\end{matrix}\right.\)

    \(\Leftrightarrow\left\{{}\begin{matrix}P=40+40\cdot x\%\\40+40\cdot x\%+\left(40+40\cdot x\%\right)\cdot x\%=90\end{matrix}\right.\)

    \(\Rightarrow\left\{{}\begin{matrix}P=40+40\cdot x\%\\x\%=50\%\end{matrix}\right.\)

    So \(P=40+40\cdot50\%=60\)

    Answer P = 60.

  • See question detail

    This is "Math Q&A" not "English Q&A"

    Please put this question on different page.

    Thanks for your cooperation.

  • See question detail

    Call the number is a.

    We have \(a\cdot x=a:0,125\)

    \(\Leftrightarrow a\cdot x=a:\dfrac{1}{8}\)

    \(\Leftrightarrow a\cdot x=a\cdot8\Rightarrow x=8\)

    So the value of x is 8.

    Answer : 8.

  • See question detail

    The shape must be placed in the shaded space is triangle :

    Heart Square Circle Triangle
    Triangle Heart Square Circle
    Square Circle Triangle Heart
    Circle Triangle Heart Square

    Answer : Triangle \(\Delta\)

  • See question detail

    When Samir completes a ten-day job with the second ways, we have the total amounts he can earn:

    \(1+2+4+8+16+32+64+128+256+512=1023\)

    So the positive difference of the total amounts Samir can be paid :

    \(1023-1000=23\)

    Answer : 23.

  • See question detail

    The degree  measure of an interior angle of a regular pentagon is :

    \(\left(5-2\right)\cdot\dfrac{180}{5}=3\cdot36=108^o\)

    Answer : \(108^o\)

  • See question detail

    We have : y = x + a.

    See : 5 = 2 + a => a = 3.

    6 = 3 + a => a = 3.

    7 = 4 + a => a = 3.

    So the value of a is 3.

    Answer : 3.

  • See question detail

    The first odd number is 21.

    The last odd number is 157.

    So there will be \(\dfrac{157-21}{2}+1=69\) (odd numbers) between 20 and 158.

    Answer : 69 odd numbers.

  • See question detail

    We know that all the sides of a square are equal.

    So we have : \(x-2=3\)

    \(\Rightarrow x=5\)

    So the value of x is 5.

    Answer : 5.

  • See question detail

    The number of red grapes : \(50\cdot20\%=10\left(grapes\right)\)

    So there will be \(50-10=40\left(grapes\right)\) are not red.

    Answer : 40 grapes.

  • See question detail

    Area of the 120 mm2 triangle: 
    Area = 1/2 x height x base 
    120mm² = 1/2 x 10 x base 
    Find out the base: 
    120mm² = 5 x base 
    base = 120/5 
    => base = 24mm. 

    We know that two triangles that are similar will have same increase in height and base dimensions. 
    Since height is doubled, then base is doubled. 

    So :

    height is 20mm 
    base is 48mm 
    The area of a similar triangle with a height of 20 mm is :

    \(\dfrac{1}{2}\cdot20\cdot48=480\left(mm^2\right)\)

    Answer : 480 mm2.

  • See question detail

    We have : \(Side=2\cdot Radius\)

    So one side of the square is \(2\cdot4=8\left(ft\right)\)

    The area of the square : \(8\cdot8=64\left(ft^2\right)\)

    Answer : 64.

  • See question detail

    The sum of books : 6 + 3 + 7 = 16 (books)

    The number of math books is : \(3+7=10\left(books\right)\)

    The probability is : \(\dfrac{10}{16}=\dfrac{5}{8}\)

    Answer : \(\dfrac{5}{8}\)

  • See question detail

    There are \(5\cdot3\cdot2\cdot4=120\) different uniforms can he wear to school.

    Answer : 120 ways.

  • See question detail

    We have :

    1 year : 12 month.

    35 years : x month

    So \(x=12\cdot35=420\left(months\right)\)

    Answer : 420 months.

  • See question detail

    We have the formula :

    Volume = Length x Width x Height.

    So \(120=5\cdot4\cdot height\)

    So the value of the height is \(\dfrac{120}{5\cdot4}=6\left(in\right)\)

    Answer : 6 in.

  • See question detail

    \(FACT\left(96\right)=2^5\cdot3\)

    The greatest prime factor of 96 is 3.

    Answer : 3.

  • View more →
Questions ( 8 )
  • Give P(x) such that P(21) = 17; P(37) = 33.

    P(N) = N+51. Find N ?

    (NewYork - 1975)

  • Sorry this question I do for my friend as a reference.

    Topic : Zigma on calculator, here I use VINACAL 570ES PLUS II for this problem.

    The rule to solve the zigma problem is always formulate the general formula. Last, we must show that the beginning number and the last number is equal ?, after that, all the calculating form is very easy.

    Okay now we come to the first example (Violympic 8 - Round 10) :

    \(Ex1:\) Let \(a_1,a_2,...,a_n\) are determined by the formula : 

    \(a_k=\dfrac{3k^2+3k+1}{\left(k^2+k\right)^3}\forall k\ge1\) Find Sum of : \(1+a_1+a_2+...+a_9?\)

    Okay this is an easy problem cause they have given us all the formula and last,first number.

    So use calculator : We use SHIFT + log (above ON) :

    It appears like \(\sum\limits^{ }_{x=}\left(\right)\), type all the informations into that we have : \(\sum\limits^9_1\left(\dfrac{3x^2+3x+1}{\left(x^2+x\right)^3}\right)\) (Remember always use x to express). Type all the informations then press "=" we have solution \(\dfrac{999}{1000}\).

    So the Sum is \(1+\dfrac{999}{1000}=\dfrac{1999}{1000}\).

    Easy right ?

    Now we come to Example 2 :

    Calculate : \(A=\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+99}+\dfrac{1}{50}\)?

    So we create the formulate the general formula is \(\dfrac{n}{2}\cdot\left(n+1\right)\). (This formula you must have or else we can't use the calculator). So the general formula is : \(\dfrac{1}{\dfrac{n}{2}\left(n+1\right)}\)

    So we continue using calculator to type :D : \(\sum\limits^{99}_{x=2}\left(\dfrac{1}{\dfrac{x}{2}\cdot\left(x+1\right)}\right)\) we have answer : \(\dfrac{49}{50}\)

    So the answer is \(\dfrac{49}{50}+\dfrac{1}{50}=1\). Easy right ?

    Now we come to harder problem like this :

    Example 3 : \(A=\dfrac{2014+\dfrac{2013}{2}+\dfrac{2012}{3}+...+\dfrac{2}{2013}+\dfrac{1}{2014}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}}\)

    Find general formula of numerator is \(\dfrac{\left(2015-x\right)}{x}\)

    So calculate the numerator we have : \(\sum\limits^{2014}_{x=1}\left(\dfrac{2015-x}{x}\right)=14479,46409\) => Don't worry about the answer, keep it there.

    Now we come to calculate the denominator with  general formula is \(\dfrac{1}{x}\)

    We have \(\sum\limits^{2014}_{x=1}\left(\dfrac{1}{x}\right)=7,185838258\)

    Now the answer is numerator/denominator = \(\dfrac{14479,46409}{7,185838258}=2015\) => Last answer is a nice number.

    So that's all, this Zigma's problem I give it to my friend Kayasari Ryuunosuke  and all users in this website.

    Thanks :))

  • Find \(n\left(1010\le n\le2010\right)\) satisfies :

    \(a_n=\sqrt{20203+21n}\)

    is also a natural number ?

  • Let a,b are numbers which satisfy \(\left\{{}\begin{matrix}a+b=3\\a^2+b^2\ge5\end{matrix}\right.\)

    Find minimum value of the expression : \(P=a^4+b^4+6a^2b^2\)?

  • Another good question here :D

    Let a,b,c be the lengths of triangle ABC.

    The triangle ABC must satisfy what condition that the expression 

    \(E=\dfrac{4a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{4c}{a+b-c}\)

    has the minimum value ? Find that minimum value.

  • I have some good math problems in English :D

    Number 1. Let a,b be the real numbers satisfy a + b = 2. Prove that \(a^4+b^4\ge a^2+b^2\)

    Number 2. Let a,b,c be the positive numbers satisfy ab + bc + ca = 1.

    Prove that  : \(\dfrac{a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\le\dfrac{3}{2}\)

  • Hi Mathulike :0

    I know this is a spam question but can I ask a question that : "How can we be the Coordinator in Mathulike and what are standards for us to become a Coordinator ?"

    Pls don't remove my question, I'm CTV in page hoc24.vn :)

  • View more →
© HCEM 10.1.29.240
Crafted with by HCEM