MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 459 )
  • See question detail

    \(x^3+y^3=x-y\)

    \(\Rightarrow x^3+y^3-x+y=0\)

    \(\Rightarrow x^3-x+y^3+y=0\)

    \(\Rightarrow x\left(x^2-1\right)+y\left(y^2+1\right)=0\)

    But \(x,y\ge0\)

    \(\Rightarrow x^2,y^2\ge0\Leftrightarrow x\left(x^2-1\right);y\left(y^2+1\right)\ge0\)

    => \(x\left(x^2-1\right)andy\left(y^2+1\right)\) aren't two numbers opposite

    \(\Rightarrow x\left(x^2-1\right)+y\left(y^2+1\right)=0\)

    \(\Rightarrow\left[{}\begin{matrix}x\left(x^2-1\right)=0\\y\left(y^2+1\right)=0\end{matrix}\right.\)

    \(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0\\x^2-1=0\end{matrix}\right.\\\left[{}\begin{matrix}y=0\\y^2+1=0\end{matrix}\right.\end{matrix}\right.\)

    \(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\\\left[{}\begin{matrix}y=0\\y\in\phi\end{matrix}\right.\end{matrix}\right.\)

    But \(x\ge0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

    \(\Rightarrow MaxA=x^2+y^2=1^2+0^2=1+0=1\)

  • See question detail

    We have:

    \(4a^2+3ab-11b^2⋮5\)

    But again, we have:

    \(5\left(a^2+ab-2b^2\right)⋮5\)

    \(\Rightarrow\left(5a^2+5ab-10b^2\right)-\left(4a^2+3ab-11b^2\right)⋮5\)

    \(\Rightarrow5a^2-4a^2+5ab-3ab-10b^2+11b^2\)

    \(\Rightarrow a^2+2ab+b^2=\left(a+b\right)^2⋮5\)

    \(\Rightarrow\left(a^2+b^2\right)\left(a^2-b^2\right)=a^4-\left(ab\right)^2+\left(ab\right)^2-b^4\)

    \(\Rightarrow a^4-b^4⋮5\)

  • See question detail

    Applying the properties of the final digit of a power, we have:

    34n+1 \(\left(n\in N\right)\) = ...3

    Thence inferred:

    34n+2 = ...3 * 3 = ...9

    34n+3 = ...3 * ...9 = ...27 = ...7

    34n = ...3 : 3 = ...1

    Last powers of 4n + 3 is 399 and first powers of 4n+3 is 33

    So the power of 3 when rased to 4n + 3 will have the last digit of 7. And in the above sequence there are:

    \(\left(99-3\right):4+1=25\left(powers\right)\)

    Answer: 25 powers

  • See question detail

    Everyday he read 10 words more than he read during the lesson before

    So, after 30 lessons, the number of words he read more are:

    10 . 30 = 300 words

    And if we do not count the number of word he read more than, the number of words he read in 30 lessons is:

    50 . 30 = 1500 words

    So the total number of words he read in 30 lessons are:

    1500 + 300 = 1800 [words]

  • See question detail

    I only know in near time.

    \(f\left(x\right)=3x-4\)

    \(\Rightarrow f\left(10\right)=3\cdot10-4=30-4=26\)

    \(g\left(x\right)=x^2-2x+5\)

    \(\Rightarrow g\left(-4\right)=\left(-4\right)^2-2\cdot\left(-4\right)+5=16-\left(-8\right)+5=16+8+5=24+5=29\)

    \(\Rightarrow g\left(-4\right)+f\left(10\right)=29+26=55\)

  • See question detail

    x.3 + x.2 = 50

    => x.\(\left(3+2\right)\) = 50

    => x . 5 = 50

    => x = 50/5

    => x = 10

    x . 5 + x . 3 = 120

    => x.\(\left(5+3\right)\) = 120

    => x . 8 = 120

    => x = 120/8

    => x = 15

  • See question detail

    When a = 80; b = 10; c = 30

    => a : b : c = 80 : 10 : 30 = 8: 1: 3

  • See question detail

    21 > 3

    => 21/3 > 1

    5 < 9

    => 5/9 < 1

    ==> 21/3 > 5/9

  • See question detail

    The time from 11:15 to 11:30 is: 11:30 - 11:15 = 0:15 = 15 minutes

    The number % of downloads from 11:15 - 11:30 are: 80% - 35% = 45%

    So load speed is: 45% : 15 = 3%/minute

    The number of remaining % is: 100% - 80% = 20%

    So it will complete download after time is: 20% : 3% = 6minutes 40seconds

    So a x b = 6 x 40 = 240

  • See question detail

    Put A = \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}\)

    \(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\)

    \(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^8}\)

    \(\Rightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\right)\)

    \(\Rightarrow A=1-\dfrac{1}{2^9}=1-\dfrac{1}{512}=\dfrac{511}{512}\)

  • See question detail

    Volume this soil cube  of is:

    10 x 10 x 10 = 1000 [cm3]

    The volume of each rectangular prism is:

    2 x 4 x 5 = 40 [cm3]

    So the number of rectangular prisms size of 2x4x5 made from the above ground is:

    1000 : 40 = 25 [rectangular prisms]

  • See question detail

    30% of 80% of 20 is 30% of 16 is 16*30% = 4,8

    => x% of 60% of 40 is the same as 4,8

    => x% of 24 is 4,8

    => x% = 4,8 : 24

    => x% = 1/5

    => x = 20

    So it is 20

  • See question detail

    This number is:

    \(3^2\left(2\cdot5\right)=9.10=90\)

  • See question detail

    The number of pages in her notes is: 

    40 . 240 = 9600 [word]

    The total speed of writing of Chanel and Marcus is:

    36 + 54 = 90 [word/minute]

    Time for Chanel and Marcus to finish writing the book is:

    9600 : 90 = 106m40s 

    Answer: 106minutes 40seconds

  • See question detail

    Everyday have 24h; a hour have 60minutes

    => Everyday have:

    24 . 60 = 1440 [minutes]

    So everyday, there are more people on Earth are:

    1440 . 155 = 223 200 [people]

    So everyday, there are more 223 200 people on Earth

  • See question detail

    20 + 30 + 40 + 50 + 60

    = 50 + 40 + 50 + 60

    = 50 + 50 + 40 + 60

    = 100 + 100

    = 200

  • See question detail

    One-half of rectangular sports field is:

    880: 2 = 440 [m]

    The length of rectangular sports field is:

    440 : \(\left(3+1\right)\cdot3=330\left(m\right)\)

    The width of rectangular sports field is:

    440 - 330 = 110 [m]

    So the area of the field is:

    330.110 = 36300 [m2]

  • See question detail

    Digits thousands have 2 choices are 1 or 2

    Digits hundreds have 2 choices are 1 or 2 too.

    Digits tens and Digits units have 2 choices too.

    So The numbers of four digits containing two digits 1 and 2 are:

    2.2.2.2 = 16 

  • See question detail

    The radius of this circle is:

    \(\dfrac{\dfrac{24\pi}{3,14}}{2}=\dfrac{24}{2}=12\left(cm\right)\)

  • See question detail

    4 + 22 + 23 + 24 + ... + 220

    we have:

    22 + 23 + 24 + ... + 220 have 220 - 22 + 1 = 199

    And the number of even number are:

    \(\left(\text{220 - 20}\right):2+1=102\) [even number]

    So the number of odd are:

    199 - 102 = 97 [odd]

    Because the number of odd is a odd 

    => Their sum are a odd

    So 22 + 23 + ... + 220 is a odd

    P is a odd

    So P can't written as power of 2hihi

  • First
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM