MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 459 )
  • See question detail


    A B C D d

    Because two segments AB and CD are symmetric to each other with respect to axis d

    => AB = CD = 3cm

    So CD = 3cm

  • See question detail

    5/89 + 8/89 = 13/89 

  • See question detail

    \(A=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{123}-\dfrac{1}{126}\right)\)

    \(A=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{126}\right)=\dfrac{1}{3}\cdot\dfrac{41}{126}=\dfrac{41}{378}\)

    So \(A=\dfrac{41}{378}\)

  • See question detail

    Because ABC is the isosceles triangles

    We have: \(\widehat{A}\) = 90o

     * If \(\widehat{A}\) is a corner side => \(\widehat{A}=\widehat{B}or\widehat{C}=90^o\)

    => Last corner = 0o [nosatisfied]

     * If \(\Delta ABC\) isosceles in A

    => \(\widehat{B}=\widehat{C}=\dfrac{180^0-90^0}{2}=45^0\) [satisfied]

    So \(\widehat{B}=\widehat{C}=45^0\)

  • See question detail

    A B C D 1 2 1 2

    We have:

    \(\widehat{A_1}+\widehat{D_2}+\widehat{C}=180^o\)

    \(\widehat{A_2}+\widehat{D_1}+\widehat{B}=180^o\)

    \(\Rightarrow\widehat{A_1}+\widehat{D_2}+\widehat{C}+\widehat{A_2}+\widehat{D_1}+\widehat{B}=180^0+180^0\)

    => \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)

    So the sum of four angles in a quadrilateral is 360o

  • See question detail

    1 + 2 + 22 + ... + 214

    = [1 + 2 + 22 + 23 + 24] + 26[1 + 2 + 22 + 23 + 24] + 211[1 + 2 + 22 + 23]

    = 31 + 26.31 + 211.15 

    But 211.15 \(⋮̸31\)

    => A \(⋮̸31\)

    This question was wrong

  • See question detail

    a,

    x2 + x + 1

    = x2 + 2.x.1/2 + [1/2]2 + 3/4

    = [x + 1/2]2 + 3/4 \(\ge\) 3/4 

    => x2 + x + 1 > 0

    b,

    2x2 + 2x + 1

    = x2 + x2 + 2.x.1 + 12

    = x2 + [x+1]2 \(\ge\)0 + 0 = 0

    => 2x2 + 2x + 1 \(\ge0\)

  • See question detail

    A= 1/3[1/3 - 1/6 + 1/6 - 1/9 +... + 1/132 - 1/135]

    = 1/3[1/3 - 1/135]

    = 1/3*44/135

    = 44/405

  • See question detail

    = 862.38 + 862.62

    = 862.\(\left(38+62\right)\)

    = 862.100

    = 86200

  • See question detail

    Help you solve math was wrong

  • See question detail

    \(A=\dfrac{1}{6\cdot10}+\dfrac{1}{10\cdot14}+...+\dfrac{1}{202\cdot206}\)

    \(A=\dfrac{1}{4}\left(\dfrac{1}{6}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{14}+...+\dfrac{1}{202}-\dfrac{1}{206}\right)\)

    \(A=\dfrac{1}{4}\left(\dfrac{1}{6}-\dfrac{1}{206}\right)\)

    \(A=\dfrac{1}{4}\cdot\dfrac{50}{309}\)

    \(A=\dfrac{25}{618}\)

    So \(A=\dfrac{25}{618}\)

  • See question detail

    With x = -1

    => x100 + x99 + x98 + ... + x + 1

    = \(\left(-1\right)^{100}+\left(-1\right)^{99}+\left(-1\right)^{98}+...+\left(-1\right)+1\)

    = \(1+\left(-1\right)+1+...+\left(-1\right)+1\)

    \(=\left[1+\left(-1\right)\right]+\left[1+\left(-1\right)\right]+...+\left[1+\left(-1\right)\right]+1\)

    \(=0+0+...+0+1=1\)

  • See question detail

    Because Daniella ate more cookies thann any of other kids 

    => The cookies of Daniella > 3 

    But have 20 cookies

    Again: 1 + 2 + 3 + x + y + z = 20

    => x + y + z = 14

    Tell the cookies of Daniella is z and z > x, z > y

    => x + y is maximun so z is minimun and z > x, z > y

    => x + y = 8 and x = y = 4 or x = 3 and y = 5 and repeat.

    => z = 6

    So the smallest possible number of cookies that Daniella ate is 6 cookies

  • See question detail

    Tell the numbers of this answer is a

    => a\(⋮3,4,5\) and \(0\le a\le499\)

    We have:

    3 = 3

    4 = 22

    5 = 5

    => \(LCM\left(3,4,5\right)=2^2.3.5=60\)

    => The multiples of all numbers 3, 4 and 5 is multiples of 60

    => a \(\in\left\{0,60,120,180,240,300,360,420,480,...\right\}\)

    But \(0\le a\le499\)

    => a \(\in\left\{0,60,120,180,240,300,360,420,480\right\}\)

    So there are 9 numbers

  • See question detail

    50 + 300 + 50 + 100

    = [50 + 50] + 300 + 100

    = 100 + 300 + 100

    = 500

  • See question detail

    x : 2 + x + x:3 + x: 4 = 25

    => x/2 + x/1 + x/3 + x/4 = 25

    => 6x/12 + 12x/12 + 4x/12 + 3x/12 = 15

    => \(\dfrac{6x+12x+3x+4x}{12}=25\)

    \(\Rightarrow\dfrac{25x}{12}=25\)

    => 25x = 25.12

    => x = 12

  • See question detail

    70 + 12 = 82

  • See question detail

    56 + 82 = 138

  • See question detail

    60 + 12 = 72

    I will tk you

  • See question detail

    90 + 501 = 591

  • First
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM