-
See question detail
\(\Rightarrow\left[{}\begin{matrix}x+1+x+2+x+3+x+4=5x\\-x-1-x-2-x-3-x-4=5x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x+10=5x\\-4x-10=5x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=-\dfrac{10}{9}\end{matrix}\right.\)
-
See question detail
We have:
\(\left\{{}\begin{matrix}AB^2+AC^2=BC^2\\BH^2+AH^2=AB^2\\AH^2+HC^2=AC^2\end{matrix}\right.\Rightarrow BH^2+AH^2+AH^2+HC^2=BC^2\)
Because AB2 + AC2 = BC2
\(\Rightarrow BH^2+2\cdot AH^2+HC^2=BC^2\)
\(\Rightarrow9^2cm+2\cdot AH^2+4^2cm=13^2cm\)
\(\Rightarrow2\cdot AH^2=72cm\)
\(\Rightarrow AH^2=36cm^2\Leftrightarrow AH=6cm\)
So the area of triangle ABC is:
\(\dfrac{\left(9+4\right)\cdot6}{2}=\dfrac{13\cdot6}{2}=13\cdot3=39\left(cm^2\right)\)
-
See question detail
Because \(\overline{6x89y}⋮5\)
\(\Rightarrow\left[{}\begin{matrix}y=0\\y=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\overline{6x89y}=\overline{6x890}\\\overline{6x89y}=\overline{6x895}\end{matrix}\right.\)
And this number divisible by 9
\(\Rightarrow\left[{}\begin{matrix}6+x+8+9+0⋮9\\6+x+8+9+5⋮9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}23+x⋮9\\28+x⋮9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=8\end{matrix}\right.\)
So \(\left(x,y\right)=\left(4;0\right);\left(8;5\right)\)
-
See question detail
\(A=-2x^2+4x+8\)
\(=2\left(-x^2+2x+4\right)\)
\(=2\left[-\left(x^2-2\cdot x\cdot1+1\right)+5\right]\)
\(=2\left[-\left(x-1\right)^2+5\right]\)
\(=2\left[-\left(x-1\right)^2\right]+10\)
\(-\left(x-1\right)^2\le0\Rightarrow2\left[-\left(x-1\right)^2\right]\le0\)
\(\Rightarrow A\le10\)
\(\Rightarrow Max_A=10\) at x = 1
-
See question detail
We have: 5x = ...5 with \(\forall x\in\) N*
=> A = ...5 + ...5 + ... + ...5
And the number of terms of A are:
100 - 1 + 1 = 100 [terms]
So last-digit of A is: ...5 * 100 = ...500 = ...0
So, the answer is 0
-
See question detail
Call Anne's teacher's age number is a
\(\Rightarrow\left\{{}\begin{matrix}20< a< 65\\a=x^2\end{matrix}\right.\Rightarrow a\in\left\{25;36;49;64\right\}\)
Because a > 2, if a+1 is a prime number
=> a+1 is a odd
=> a is a even number
\(\Rightarrow a\in\left\{36;64\right\}\)
** If a = 36 => a+1 = 37 --> Right a prime number
** If a = 64 => a+1 = 65 divisive by 5 --> Wrong
So teacher's Anne's age is 36
-
See question detail
a,
\(x^4+4\)
\(=\left[\left(x^2\right)^2+4x^2+4\right]-4x^2\)
\(=\left[\left(x^2\right)^2+2\cdot x^2\cdot2+2^2\right]-\left(2x\right)^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2+2x\right)\left(x^2+2-2x\right)\) Apply \(a^2-b^2=\left(a+b\right)\left(a-b\right)\)
b,
\(4x^2+81\)
\(=2^2\cdot\left(x^2\right)^2+81\)
\(=\left[\left(2x^2\right)^2+36x^2+81\right]-36x^2\)
\(=\left[\left(2x^2\right)^2+2\cdot2x^2\cdot9+9^2\right]-\left(6x\right)^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)
\(=\left(2x^2+9+6x\right)\left(2x^2+9-6x\right)\)
I'm in 7th grade so I can not do sentence c
-
See question detail
I know Phan Thanh Tinh, but this account you give is Phan Thanh Tịnh. Why you sure 2 accounts are one ??? May be this two persons have the same name. And if myth this 2 accounts are one, I hope Summer Clouds solve. Thanks
-
See question detail
a,b are positive number, aren't integer, so they can are positive fraction
So Lê Quốc Trần Anh is wrong
-
See question detail
The first day of this month is not Tuesday. So may be first Tuesday is 3rd. We let's try:
Tuesday: 3 10 17 24 31
but 31st is last day of a month has 31days => Unsatisfactory
So first Tuesday of this month is 2nd
We let's try too.
Tuesday: 2 9 16 23 30
So the last Tuesday of this month is 30th may be last day of this month. But the topic talk last day isn't Tuesday. Angain have in a year will has 7 months have 31 days.
So the last day of the month is 31
-
See question detail
\(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+...+\dfrac{1}{100\cdot104}\)
\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{100}-\dfrac{1}{104}\right)\)
\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{104}\right)=\dfrac{1}{5}\cdot\dfrac{25}{104}=\dfrac{5}{104}\)
So the value of \(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+............+\dfrac{1}{100\cdot104}\)is \(\dfrac{5}{104}\)
-
See question detail
Worst case is Peter take out 2 red balls, 2 white balls, 2 yellow balls, all blue ball and black ball.
So Peter taken:
2 + 2 + 2 + 2 + 1 = 9 [balls]
Not three members of the same color, have to take 1 ball more
Number of balls to take are: 9 + 1 = 10 [balls]
Answer 10 balls
-
See question detail
By theme we have:
a = 2b = 3c = 4d = 6e
and because a,b,c,d,e are the ages of 5 people, them are bigger than 0
\(\Rightarrow a⋮2,3,4,6\) and a is smallest
=> a is least common multiple
\(LCM\left(2,3,4,6\right)=12\)
So a is 12
=> \(\left\{{}\begin{matrix}b=6\\c=4\\d=3\\e=2\end{matrix}\right.\Rightarrow a+b+c+d+e=12+6+4+3+2=27\)
So the smallest possible value of a+b+c+d+e is 27
-
See question detail
\(A=x^2-xy+y^2>x^2-xy-xy+y^2\)
\(\Rightarrow A>x^2-2xy+y^2\)
\(\Rightarrow A>\left(x-y\right)^2\)
But \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow A\ge0\)
But \(A\ne0\Rightarrow A>0\)
-
See question detail
B = 19 - 6x - 9x2
\(=-\left(9x^2+6x\right)+19\)
\(=-\left[\left(3x\right)^2+2\cdot3x\cdot1+1^2\right]+18\)
\(=-\left(3x+1\right)^2+18\)
\(-\left(3x+1\right)^2\le0\)
\(\Rightarrow B\le18\)
=> Maximum of B = 18 at \(-\left(3x+1\right)^2=0\) and x = \(-\dfrac{1}{3}\)
-
See question detail
A = 2x - x2
= \(-\left(x^2-2\cdot x\cdot1+1^2\right)+1\)
\(=-\left(x-1\right)^2+1\)
\(-\left(x-1\right)^2\le0\)
\(\Rightarrow-\left(x-1\right)^2+1\le1\)
=> Maximum of A = 1 at \(-\left(x-1\right)^2=0\) and x = 1
-
See question detail
A = x2 + 8x + 1
= x2 + 2.x.4 + 16 - 15
= \(\left(x+4\right)^2-15\ge-15\)
=> Minimum of A = -15 at \(\left(x+4\right)^2=0\) and x = -4
B = x2 - x + 1
= \(x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
=> Minimun of B = \(\dfrac{3}{4}\) at \(\left(x-\dfrac{1}{2}\right)^2=0\) and x = \(\dfrac{1}{2}\)
-
See question detail
Suppose:
a > b > c > d > e
=> a - b > b - c
=> |a-b| = |b-c| when a-b = c-b or a = c
Again have:
b - c > c - d
=> |b-c| = |c-d| when b-c = d-c or b = d
Similarly we get results:
a = c ; b = d; c = e; d = a
* a = c and d = a => a = d => a = c = d [1]
* b = d and d = a => a = b => a = b = d [2]
* c = e and a = c => a = e => a = c = e [3]
From [1], [2], [3] => a = b = c = d = e
-
See question detail
3 x 10 + 3 x 20
= 30 + 60
= 90
-
See question detail
@Phan Thanh Tinh, in the subject said \(x,y\ge0\), so I only apply :]