MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 459 )
  • See question detail

    \(\Rightarrow\left[{}\begin{matrix}x+1+x+2+x+3+x+4=5x\\-x-1-x-2-x-3-x-4=5x\end{matrix}\right.\)

    \(\Rightarrow\left[{}\begin{matrix}4x+10=5x\\-4x-10=5x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=-\dfrac{10}{9}\end{matrix}\right.\)

  • See question detail

    We have:

    \(\left\{{}\begin{matrix}AB^2+AC^2=BC^2\\BH^2+AH^2=AB^2\\AH^2+HC^2=AC^2\end{matrix}\right.\Rightarrow BH^2+AH^2+AH^2+HC^2=BC^2\)

    Because AB2 + AC2 = BC2

    \(\Rightarrow BH^2+2\cdot AH^2+HC^2=BC^2\)

    \(\Rightarrow9^2cm+2\cdot AH^2+4^2cm=13^2cm\)

    \(\Rightarrow2\cdot AH^2=72cm\)

    \(\Rightarrow AH^2=36cm^2\Leftrightarrow AH=6cm\)

    So the area of triangle ABC is:

    \(\dfrac{\left(9+4\right)\cdot6}{2}=\dfrac{13\cdot6}{2}=13\cdot3=39\left(cm^2\right)\) 

  • See question detail

    Because \(\overline{6x89y}⋮5\)

    \(\Rightarrow\left[{}\begin{matrix}y=0\\y=5\end{matrix}\right.\)

    \(\Rightarrow\left[{}\begin{matrix}\overline{6x89y}=\overline{6x890}\\\overline{6x89y}=\overline{6x895}\end{matrix}\right.\)

    And this number divisible by 9

    \(\Rightarrow\left[{}\begin{matrix}6+x+8+9+0⋮9\\6+x+8+9+5⋮9\end{matrix}\right.\)

    \(\Rightarrow\left[{}\begin{matrix}23+x⋮9\\28+x⋮9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=8\end{matrix}\right.\)

    So \(\left(x,y\right)=\left(4;0\right);\left(8;5\right)\)

  • See question detail

    \(A=-2x^2+4x+8\)

    \(=2\left(-x^2+2x+4\right)\)

    \(=2\left[-\left(x^2-2\cdot x\cdot1+1\right)+5\right]\)

    \(=2\left[-\left(x-1\right)^2+5\right]\)

    \(=2\left[-\left(x-1\right)^2\right]+10\)

    \(-\left(x-1\right)^2\le0\Rightarrow2\left[-\left(x-1\right)^2\right]\le0\)

    \(\Rightarrow A\le10\)

    \(\Rightarrow Max_A=10\) at x = 1

  • See question detail

    We have: 5x = ...5 with \(\forall x\in\) N*

    => A = ...5 + ...5 + ... + ...5

    And the number of terms of A are:

    100 - 1 + 1 = 100 [terms]

    So last-digit of A is: ...5 * 100 = ...500 = ...0

    So, the answer is 0

  • See question detail

    Call Anne's teacher's age number is a

    \(\Rightarrow\left\{{}\begin{matrix}20< a< 65\\a=x^2\end{matrix}\right.\Rightarrow a\in\left\{25;36;49;64\right\}\)

    Because a > 2, if a+1 is a prime number

    => a+1 is a odd

    => a is a even number

    \(\Rightarrow a\in\left\{36;64\right\}\)

    ** If a = 36 => a+1 = 37 --> Right a prime number 

    ** If a = 64 => a+1 = 65 divisive by 5 --> Wrong 

    So teacher's Anne's age is 36 haha

  • See question detail

    a,

    \(x^4+4\)

    \(=\left[\left(x^2\right)^2+4x^2+4\right]-4x^2\)

    \(=\left[\left(x^2\right)^2+2\cdot x^2\cdot2+2^2\right]-\left(2x\right)^2\)

    \(=\left(x^2+2\right)^2-\left(2x\right)^2\)

    \(=\left(x^2+2+2x\right)\left(x^2+2-2x\right)\)   Apply \(a^2-b^2=\left(a+b\right)\left(a-b\right)\)

    b, 

    \(4x^2+81\)

    \(=2^2\cdot\left(x^2\right)^2+81\)

    \(=\left[\left(2x^2\right)^2+36x^2+81\right]-36x^2\)

    \(=\left[\left(2x^2\right)^2+2\cdot2x^2\cdot9+9^2\right]-\left(6x\right)^2\)

    \(=\left(2x^2+9\right)^2-\left(6x\right)^2\)

    \(=\left(2x^2+9+6x\right)\left(2x^2+9-6x\right)\)

    I'm in 7th grade so I can not do sentence c

  • See question detail

    I know Phan Thanh Tinh, but this account you give is Phan Thanh Tịnh. Why you sure 2 accounts are one ??? May be this two persons have the same name. And if myth this 2 accounts are one, I hope Summer Clouds solve. Thanks 

  • See question detail

    a,b are positive number, aren't integer, so they can are positive fraction

    So Lê Quốc Trần Anh is wrong

  • See question detail

    The first day of this month is not Tuesday. So may be first Tuesday is 3rd. We let's try: 

    Tuesday: 3              10              17              24              31

    but 31st is last day of a month has 31days => Unsatisfactory

    So first Tuesday of this month is 2nd

    We let's try too.

    Tuesday: 2               9               16               23               30

    So the last Tuesday of this month is 30th may be last day of this month. But the topic talk last day isn't Tuesday. Angain have in a year will has 7 months have 31 days.

    So the last day of the month is 31 haha

  • See question detail

    \(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+...+\dfrac{1}{100\cdot104}\)

    \(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{100}-\dfrac{1}{104}\right)\)

    \(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{104}\right)=\dfrac{1}{5}\cdot\dfrac{25}{104}=\dfrac{5}{104}\)

    So the value of \(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+............+\dfrac{1}{100\cdot104}\)is \(\dfrac{5}{104}\)

  • See question detail

    Worst case is Peter take out 2 red balls, 2 white balls, 2 yellow balls, all blue ball and black ball.

    So Peter taken:

    2 + 2 + 2 + 2 + 1 = 9 [balls]

    Not three members of the same color, have to take 1 ball more

    Number of balls to take are: 9 + 1 = 10 [balls]

    Answer 10 balls

  • See question detail

    By theme we have:

    a = 2b = 3c = 4d = 6e

    and because a,b,c,d,e are the ages of 5 people, them are bigger than 0

    \(\Rightarrow a⋮2,3,4,6\) and a is  smallest

    => a is least common multiple

    \(LCM\left(2,3,4,6\right)=12\)

    So a is 12

    => \(\left\{{}\begin{matrix}b=6\\c=4\\d=3\\e=2\end{matrix}\right.\Rightarrow a+b+c+d+e=12+6+4+3+2=27\)

    So the smallest possible value of a+b+c+d+e is 27

  • See question detail

    \(A=x^2-xy+y^2>x^2-xy-xy+y^2\)

    \(\Rightarrow A>x^2-2xy+y^2\)

    \(\Rightarrow A>\left(x-y\right)^2\)

    But \(\left(x-y\right)^2\ge0\)

    \(\Leftrightarrow A\ge0\)

    But \(A\ne0\Rightarrow A>0\)

  • See question detail

    B = 19 - 6x - 9x2

    \(=-\left(9x^2+6x\right)+19\)

    \(=-\left[\left(3x\right)^2+2\cdot3x\cdot1+1^2\right]+18\)

    \(=-\left(3x+1\right)^2+18\)

    \(-\left(3x+1\right)^2\le0\)

    \(\Rightarrow B\le18\)

    => Maximum of B = 18 at \(-\left(3x+1\right)^2=0\) and x = \(-\dfrac{1}{3}\)

  • See question detail

    A = 2x - x2

    = \(-\left(x^2-2\cdot x\cdot1+1^2\right)+1\)

    \(=-\left(x-1\right)^2+1\)

    \(-\left(x-1\right)^2\le0\)

    \(\Rightarrow-\left(x-1\right)^2+1\le1\)

    => Maximum of A = 1 at \(-\left(x-1\right)^2=0\) and x = 1

  • See question detail

    A = x2 + 8x + 1 

    = x2 + 2.x.4 + 16 - 15

    = \(\left(x+4\right)^2-15\ge-15\)

    => Minimum of A = -15 at \(\left(x+4\right)^2=0\) and x = -4

    B = x2 - x + 1 

    = \(x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

    \(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

    => Minimun of B = \(\dfrac{3}{4}\) at \(\left(x-\dfrac{1}{2}\right)^2=0\) and x = \(\dfrac{1}{2}\)

  • See question detail

    Suppose:

    a > b > c > d > e

    => a - b > b - c

    => |a-b| = |b-c| when a-b = c-b or a = c

    Again have:

    b - c > c - d 

    => |b-c| = |c-d| when b-c = d-c or b = d

    Similarly we get results:

    a = c ; b = d; c = e; d = a

    * a = c and d = a => a = d => a = c = d [1]

    * b = d and d = a => a = b => a = b = d [2]

    * c = e and a = c => a = e => a = c = e [3]

    From [1], [2], [3] => a = b = c = d = e

  • See question detail

    3 x 10 + 3 x 20 

    = 30 + 60

    = 90

  • See question detail

    @Phan Thanh Tinh, in the subject said \(x,y\ge0\), so I only apply :]

  • First
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM