MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 521 )
  • See question detail

    There are: \(2.3=6\left(numbers\right)\)

    So the answer is A: \(6\)

  • See question detail

    There are \(3\) small triangles. (Only contains 1 triangle/each)

    There are \(2\) medium triangles. (Contains 2 small triangles/each)

    There are \(1\) big triangle.  (Contains 3 triangles)

    So there are: \(3+2+1=6\left(triangles\right)\) in this figure

  • See question detail

    From the question, we have:

    \(34.35+150\le5x\)

    <=> \(1190+150\le5x\) 

    <=> \(1340\le5x\)

    The smallest value of \(x\) will be: \(x=1340:5=268\)

    The possible answer of the question is \(268\) so there is no possible answer A,B,C,D to choose.

  • See question detail

    \(x\in\left\{-3;-2;-1;0;1;2;3;4;5;6;7;8;9\right\}\)

  • See question detail

    Tran Nhat Duong, do not copy my answer !!!

  • See question detail

    (CONTINUE) 

    => The value of \(x+y+z=7+2+5=14\)

    So the answer is C: 14

  • See question detail

    We have: \(x.y=14\) and \(y.z=10\) and \(z.x=35\)

    <=>\(x.y.y.z.z.x=14.10.35\)

    <=>\(x^2.y^2.z^2=4900\)

    <=>\(\left(x.y.z\right)^2=70^2\)

    => \(x.y.z=70\) <1>

    From the context and <1>

    => \(x=\left(x.y.z\right):\left(y.z\right)=70:10=7\)

    => \(y=\left(x.y\right):x=14:7=2\)

    => \(z=\left(z.x\right):x=35:7=5\)

    So \(x=7;y=2;z=5\)

  • See question detail

    Arrcoding to the question, we have the ratio of the salt and fresh water in Protaras is 7:193

    => The ratio of the salt and the sea water = 7:(193+7) = 7:200

    First, we exchange: \(1000hg=100kg\) (sea water).

    Because the ratio of the salt and sea water is 7:200

    => \(7kg\) salt are in \(200kg\) sea water.

    \(200kg\) sea water are more than \(100kg\) sea water: \(200:100=2\left(times\right)\)

    In \(100kg\) sea water there is: \(7:2=3,5\left(kg\right)\) salt.

    (This question has no answer because there is no 3,5 kg salt.

    If there is an answer, you must change \(1000hg\) sea water -> \(1000kg\) sea water or change the questions into: How many hectograms of salt are there in 1000hg of sea water)

  • See question detail

    What for?

  • See question detail

    The largest number of stories are: \(30:2=15\)

    So the answer is A: \(15\)

  • See question detail

    The score of the game they draw must be \(0-0\) because if the score is 1-1 or 2-2 or more, then they will have no game to lose. (They only let 1 goal in).

    The score of the game they lose must be \(0-1\) because they only let 1 goal in from the 3 matches, and if they score more goals then the score will be a draw or a win.

    From the context, the score in the game they win must be \(3-0\) ( they scored 3 goals and 1 goal been let in was the lost match).

    So the answer is B: \(3-0\)

  • See question detail

    There are: \(25-12=13\left(students\right)\) study only Biology.

    There are: \(20-12=8\left(students\right)\) study only Chemistry.

    There are: \(50-\left(13+8+12\right)=17\left(students\right)\) took neither Biology nor Chemistry.

    ANSWER: 17 students

  • See question detail

    \(A=\dfrac{2x-5}{x+2}=\dfrac{2x+4-9}{x+2}=\dfrac{2x+4}{x+2}-\dfrac{9}{x+2}\)

    Because \(\dfrac{2x+4}{x+2}\) is an integer

    => \(\dfrac{9}{x+2}\) must be an integer.

    => \(x+2\in GCD\left(9\right)\)

    => \(x+2\in\left\{\pm1,\pm3,\pm9\right\}\)

    => \(x\in\left\{-1,-3,1,-5,7,-11\right\}\)

    => \(x\in\left\{\pm1,-3,-5,7,-11\right\}\)

  • See question detail

    \(A=\dfrac{2x-5}{x+2}=\dfrac{2x+4-9}{x+2}=\dfrac{2x+4}{x+2}-\dfrac{9}{x+2}\)

    Because \(\dfrac{2x+4}{x+2}\) is an integer

    => \(\dfrac{9}{x+2}\) must be an integer

  • See question detail

    Because multiplies of 6 are all even numbers.

    The least possible number is \(6\) and the biggest possible number is \(198\).

    We have: \(\left(198-6\right):6+1=33\left(numbers\right)\) are even numbers and multiplies of 6.

    ANSWER: 33 numbers.

  • See question detail

    There is only 1 condition: \(x\in N\) \(\left(x\ge0\right)\)

    \(\left|x+1\right|=\pm x+1\)

    => There are 2 conditions with \(\left|x+1\right|\)

    Condition 1: \(x+1\ge0\left(x\in N\right)\)

    => \(x+1=x+1\)

    Condition 2: \(x+1< 0\)

    => \(x+1\ne x+1\)

  • See question detail

    \(\dfrac{-5}{6}+\dfrac{-29}{6}+\dfrac{16}{6}\le x\le\dfrac{-1}{2}+\dfrac{4}{2}+\dfrac{5}{2}\)

    \(-3\le x\le4\)

    \(x=-3;-2;-1;0;1;2;3;4\)

  • See question detail

    \(x.\left[\left(1+100\right)\cdot100:2\right]=10100\)

    \(x.5050=10100\)

    \(x=10100:5050\)

    \(x=2\)

  • See question detail

    \(=\left(\dfrac{1}{2}+\dfrac{-1}{2}\right)+\left(\dfrac{-1}{3}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}+\dfrac{-1}{4}\right)+\left(\dfrac{-1}{5}+\dfrac{1}{5}\right)+\left(\dfrac{1}{6}+\dfrac{-1}{6}\right)+\left(\dfrac{-1}{7}+\dfrac{1}{7}\right)+\dfrac{1}{8}\)

    \(=0+0+0+0+0+0+\dfrac{1}{8}\)

    \(=\dfrac{1}{8}\)

  • See question detail

    The answer is B: 1,2cm.

    The sum of the perimeters of the 3 small triangles are: \(1,2\cdot3\cdot3=10,8\left(cm\right)\)

    The length of the side of the green hexagon is: \(6-1,2\cdot2=3,6\left(cm\right)\)

    Because there are 2 sides of the hexagon are not in the perimeter of the big triangle so that the perimeter of the big triangle is: \(10,8\cdot2-\left(10,8:6\cdot2\right)=18\left(cm\right)\) <1>

    The perimeter of the big triangle is: \(6\cdot3=18\left(cm\right)\) <2>

    Because <1> = <2> \(\left(18cm=18cm\right)\)

    => The side of the small triangle is B: 1,2cm.

  • First
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM