MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 578 )
  • See question detail

    April has 30 days.

    => Zeus needs to throw: 30.12=360 (lightning bolts) in April.

    In the first week of April, he has thrown: 15.7=105 (lightning bolts)

    In the next 30-7=23 days, Zeus needs to throw: 360-105=255 (lightning bolts)

    So the average is: 255:23=11.08≈

    11 (lightning bolts per day).

  • See question detail

    The difference between the loud rock concert and the normal conversation is 120-60=60 dB. It's 3 times of 20 dB. Because every increase of 20 dB corresponds to sound becoming 10 times as loud, the rock concert must be 10 × 10 × 10 = 1000 times as loud as the normal conversation.

  • See question detail

    a + b = 273

    a - b = 23

    ⇒

     (a + b) - (a - b) = 250

         2b = 250 

           b = 125​ ​​ ​​ ​​​ ​​ ​​ ​​ ​​ ​​ ​​​ ​​ ​​ ​

    ​⇒

    ​ a = 273 - 125 = 158

    <<< hope you learn well >>>

  • See question detail

    We have: |7x−5y|≥0; |2z−3x|≥0 and |xy+yz+zx−2000|≥0

    => P≥0+0+0≥0

    P=0

     only when 7x−5y=2z−3x=xy+yz+zx−2000=0

    => 7x=5y;2z=3x;xy+yz+zx=2000

    => x5=y7

    ; z3=x2 and xy+yz+zx=2000

    => x10=y14=z15

     and xy+yz+zx=2000

    Put x10=y14=z15=k

    We have: k2=x10⋅y14=y14⋅z15=z15⋅x10=xy+yz+zx10⋅14+14⋅15+15⋅10=2000140+210+150

    =2000500=4

    => k=±2

    => (x;y;z)=(20;28;30)

     and  (−20;−28;−30)

    So minP=0

     only when (x;y;z) = (20;28;30) and (-20;-28;-30)

  • See question detail

    (2x1−5y1)2018≥0;(2x2−5y2)2018≥0;.......;(2x2019−5y2019)2018≥0

    ⇒(2x1−5y1)2018+(2x2−5y2)2018+......+(2x2019−5y2019)2018≥0

    Because (2x1−5y1)2018+(2x2−5y2)2018+..........+(2x2019−5y2019)2018≤0

    ⇒(2x1−5y1)2018+(2x2−5y2)2018+......+(2x2019−5y2019)2018=0

    ⇒2x1=5y1;2x2=5y2;..........;2x2019=5y2019

    ⇒x1y1=x2y2=..........=x2019y2019=52=x1+x2+.......+x2019y1+y2+.......+y2019

  • See question detail

    i think the title is wrong. It is: 34(AB+AC+BC)<AD+BE+CF<AB+AC+BC

  • See question detail

    We have :

    x2−5x+1=0

    ⇒x2+1=5x

     ( 1 )

    x2+1x2=(x2+1x2+2.1x.x)−2.1x.x=(x+1x)2−2

                    =(x2+1x)2−2

     ( 2 )

    ( 1 )( 2 )⇒x2+1x2=(5xx)2−2=25−2=23

    Ans : 23.

  • See question detail

    0≤a,b≤9⇒−9≤a−b≤9;a+b≤18

    We have 53ab98¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮99

    ,so :

    + 53ab98¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮9⇒25+a+b⋮9⇒a+b=2;11

    +53ab98¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮11⇒|5+a+9−3−b−8|=|3+a−b|⋮11

    ⇒a−b=−3;8

    If a + b = 2,then a + b is even but 2b is even

    => a + b - 2b = a - b is even => a - b = 8 > a + b (absurd)

    =>{a+b=11a−b=−3⇒{2a=8b=11−a

    ⇒{a=4b=7

  • See question detail

    We have  [(n-1)n(n+1)=(n^2-n)(n+1)=(n^2-n)n+n^2-n=n^3-n^2+n^2-n]

              [=n^3-n]

    [\Rightarrow n^3=(n-1)n(n+1)+n]   [(1)]

    Apply (1) to the expression, we have : 13 + 23 + 33 + ... + 20083 

    = (1 - 1)1(1 + 1) + 1 + (2 - 2)2(2 + 2) + 2 + ....... + (2008 - 2008) 2008 (2008 - 2008) + 2008

    = 1 + 2 + 1.2.3 + 3 + 2.3.4 + ........ + 2008 + 2007.2008.2009

    = (1 + 2 + 3 + ...... + 2008) + (1.2.3 + 2.3.4 + ...... + 2007.2008.2009)

    = 2017036 + 2007.2008.2009.2010 / 4 

    = The number to mik not count

  • See question detail

    a724b¯¯¯¯¯¯¯¯¯¯¯¯⋮12

    .So we have :

    + a724b¯¯¯¯¯¯¯¯¯¯¯¯⋮4⇒4b¯¯¯¯¯⋮4⇒b=0;4;8

    +a724b¯¯¯¯¯¯¯¯¯¯¯¯⋮3⇒13+a+b⋮3

    If b = 0,then ab = 0

    If b = 4,then 17+a⋮3⇒a=1;4;7⇒ab=4;16;28

    If b = 8,then 21+a⋮3⇒a=0;3;6;9⇒ab=0;24;48;72

    Hence,the maximum value of ab is 72 (only when a = 9 ; b = 8)

  • See question detail

    m1725n¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮4⇒5n¯¯¯¯¯¯⋮4⇒n=2;6

    If n = 2,then m17252¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

    divided by 11 with remainder 5

    ⇒m17247¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮11

    ⇒|m+7+4−1−2−7|=|m+1|⋮11⇒m∈∅

    If n = 6,then m17256¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

     divided by 11 with remainder 5

    ⇒m17251¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮11

    ⇒|m+7+5−1−2−1|=|m+8|⋮11⇒m=3

     Hence,(m ; n) = (3 ; 6),so m + n = 9

  • See question detail

    1962mn6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮72

     .So we have :

    + 1962mn6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

     is divisible by 8 

    ⇒mn6¯¯¯¯¯¯¯¯¯¯⋮8⇒mn6¯¯¯¯¯¯¯¯¯¯⋮4⇒n∈{1;3;5;7;9}

    + 1962mn6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮9⇒24+m+n⋮9

    - If n = 1,then 25+m⋮9⇒m=2

    .

    Because 216⋮8

    ,we choose (m ; n) = (2 ; 1)

    - If n = 3,then 27+m⋮9⇒m=0;9

    Because36⋮̸ 8;936⋮8

    ,we choose (m ; n) = (9 ; 3)

    - If n = 5,then 29+m⋮9⇒m=7

    Because 756⋮8̸ 

    ,we don't choose this case

    - If n = 7,then 31+m⋮9⇒m=5

    Because 576⋮8

    ,we choose (m ; n) = (5 ; 7)

    - If n = 9,then 33+m⋮9⇒m=3

    Because 396⋮̸ 8=49,5=99/2

    ,we don't choose this case

    Hence,(m ; n) = (2 ; 1) ; (9 ; 3) ; (5 ; 7)

  • See question detail

    ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

    divided by 8 with remainder 2

    ⇒n78¯¯¯¯¯¯¯¯

    divided by 8 with remainder 2

    => n = 1 ; 3 ; 5 ; 7 ; 9

    506mn78¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

    ⋮9⇒26 + m + n⋮9

    If n = 1,then 27 + m⋮9⇒ m = 0 ; 9

    If n = 3.then 29 + m⋮9⇒ m = 7

    If n = 5,then 31 + m⋮9⇒ m = 5

    If n = 7.then 33 + m⋮9⇒ m = 3

    If n = 9,then 35 + m⋮9⇒ m = 1

    Hence,(m ; n) = (0 ; 1) ; (9 ; 1) ; (7 ; 3) ; (5 ; 5) ; (3 ; 7) ; (1 ; 9)

  • See question detail

    506mn78¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

    divided by 8 with remainder 2

    ⇒n78¯¯¯¯¯¯¯¯

    divided by 8 with remainder 2

    => n = 1 ; 3 ; 5 ; 7 ; 9

    506mn78¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮9⇒26+m+n⋮9

    If n = 1,then27+m⋮9⇒m=0;9

    If n = 3.then 29+m⋮9⇒m=7

    If n = 5,then 31+m⋮9⇒m=5

    If n = 7.then 33+m⋮9⇒m=3

    If n = 9,then 35+m⋮9⇒m=1

    Hence,(m ; n) = (0 ; 1) ; (9 ; 1) ; (7 ; 3) ; (5 ; 5) ; (3 ; 7) ; (1 ; 9)

  • See question detail

    3a+5b⋮13⇒2(3a+5b)⋮13or6a+10b⋮13

    We have :13a+13b⋮13⇒(13a+13b)−(6a+10b)⋮13

    ⇒7a+3b⋮13

  • See question detail


    Trịnh Đức Phát 22/03/2017 at 12:43

    We have: 

    ⇒a=2017n−2016b

    We have: 2a+2015b=2(2017n−2016b)+2015b=2.2017n−2017b⋮2017

    Same as above. We hava: ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩3a+2014b=3.2017n−2.2017b⋮20174a+2013b=4.2017n−3.2017b⋮2017...2015a+2b=2015.2017n−2014.2017b

    So that: A⋮2017.2017...2017

    ⇒A⋮20172014

  • See question detail

    (*) 1+N=.....=x2/(x-2)2+4

    We have x2 ≥

     0 , (x-2)2+4 ≥

     4 > 0 

    So 1+N ≥

     0 => N ≥

     -1 ;equality : x=0 

    (*)1-N=....=(x-4)2/(x-2)2+4 

    ....... -> N ≤

     1 , equality : x=4

  • See question detail

    We have :

    x2−2x+5=x2−2x+1+4

                          =(x−1)2+4≥4

    ⇒H=1x2−2x+5≤14

    ⇒MaxH=14

    ⇔(x−1)2=0

    ⇔x=1

  • See question detail

    Use Cauchy's inequality for positive numbes a,b,c.

    a+b≥2ab−−√,b+c≥2bc−−√,c+a≥2ca−−√

    ⇒(a+b)(b+c)(c+a)≥8ab−−√⋅bc−−√⋅ca−−√=8abc

    ⇒A=abc(a+b)(b+c)(c+a)≤18

    MaxA=18⇔a=b=c>0

  • See question detail

    There is something is wrong here 

    Change to :

    We have a2+b2≥5

    => 9−(a2+b2)≤4

    => 2ab≤4

    => ab≤2

    <=> a2b2≥4

    => 4a2b2≥16

  • First
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM