-
See question detail
April has 30 days.
=> Zeus needs to throw: 30.12=360 (lightning bolts) in April.
In the first week of April, he has thrown: 15.7=105 (lightning bolts)
In the next 30-7=23 days, Zeus needs to throw: 360-105=255 (lightning bolts)
So the average is: 255:23=11.08≈
11 (lightning bolts per day).
-
See question detail
The difference between the loud rock concert and the normal conversation is 120-60=60 dB. It's 3 times of 20 dB. Because every increase of 20 dB corresponds to sound becoming 10 times as loud, the rock concert must be 10 × 10 × 10 = 1000 times as loud as the normal conversation.
-
See question detail
a + b = 273
a - b = 23
⇒
(a + b) - (a - b) = 250
2b = 250
b = 125
⇒
a = 273 - 125 = 158
<<< hope you learn well >>>
-
See question detail
We have: |7x−5y|≥0; |2z−3x|≥0 and |xy+yz+zx−2000|≥0
=> P≥0+0+0≥0
P=0
only when 7x−5y=2z−3x=xy+yz+zx−2000=0
=> 7x=5y;2z=3x;xy+yz+zx=2000
=> x5=y7
; z3=x2 and xy+yz+zx=2000
=> x10=y14=z15
and xy+yz+zx=2000
Put x10=y14=z15=k
We have: k2=x10⋅y14=y14⋅z15=z15⋅x10=xy+yz+zx10⋅14+14⋅15+15⋅10=2000140+210+150
=2000500=4
=> k=±2
=> (x;y;z)=(20;28;30)
and (−20;−28;−30)
So minP=0
only when (x;y;z) = (20;28;30) and (-20;-28;-30)
-
See question detail
(2x1−5y1)2018≥0;(2x2−5y2)2018≥0;.......;(2x2019−5y2019)2018≥0
⇒(2x1−5y1)2018+(2x2−5y2)2018+......+(2x2019−5y2019)2018≥0
Because (2x1−5y1)2018+(2x2−5y2)2018+..........+(2x2019−5y2019)2018≤0
⇒(2x1−5y1)2018+(2x2−5y2)2018+......+(2x2019−5y2019)2018=0
⇒2x1=5y1;2x2=5y2;..........;2x2019=5y2019
⇒x1y1=x2y2=..........=x2019y2019=52=x1+x2+.......+x2019y1+y2+.......+y2019
-
See question detail
i think the title is wrong. It is: 34(AB+AC+BC)<AD+BE+CF<AB+AC+BC
-
See question detail
We have :
x2−5x+1=0
⇒x2+1=5x
( 1 )
x2+1x2=(x2+1x2+2.1x.x)−2.1x.x=(x+1x)2−2
=(x2+1x)2−2
( 2 )
( 1 )( 2 )⇒x2+1x2=(5xx)2−2=25−2=23
Ans : 23.
-
See question detail
0≤a,b≤9⇒−9≤a−b≤9;a+b≤18
We have 53ab98¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮99
,so :
+ 53ab98¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮9⇒25+a+b⋮9⇒a+b=2;11
+53ab98¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮11⇒|5+a+9−3−b−8|=|3+a−b|⋮11
⇒a−b=−3;8
If a + b = 2,then a + b is even but 2b is even
=> a + b - 2b = a - b is even => a - b = 8 > a + b (absurd)
=>{a+b=11a−b=−3⇒{2a=8b=11−a
⇒{a=4b=7
-
See question detail
We have [(n-1)n(n+1)=(n^2-n)(n+1)=(n^2-n)n+n^2-n=n^3-n^2+n^2-n]
[=n^3-n]
[\Rightarrow n^3=(n-1)n(n+1)+n] [(1)]
Apply (1) to the expression, we have : 13 + 23 + 33 + ... + 20083
= (1 - 1)1(1 + 1) + 1 + (2 - 2)2(2 + 2) + 2 + ....... + (2008 - 2008) 2008 (2008 - 2008) + 2008
= 1 + 2 + 1.2.3 + 3 + 2.3.4 + ........ + 2008 + 2007.2008.2009
= (1 + 2 + 3 + ...... + 2008) + (1.2.3 + 2.3.4 + ...... + 2007.2008.2009)
= 2017036 + 2007.2008.2009.2010 / 4
= The number to mik not count
-
See question detail
a724b¯¯¯¯¯¯¯¯¯¯¯¯⋮12
.So we have :
+ a724b¯¯¯¯¯¯¯¯¯¯¯¯⋮4⇒4b¯¯¯¯¯⋮4⇒b=0;4;8
+a724b¯¯¯¯¯¯¯¯¯¯¯¯⋮3⇒13+a+b⋮3
If b = 0,then ab = 0
If b = 4,then 17+a⋮3⇒a=1;4;7⇒ab=4;16;28
If b = 8,then 21+a⋮3⇒a=0;3;6;9⇒ab=0;24;48;72
Hence,the maximum value of ab is 72 (only when a = 9 ; b = 8)
-
See question detail
m1725n¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮4⇒5n¯¯¯¯¯¯⋮4⇒n=2;6
If n = 2,then m17252¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
divided by 11 with remainder 5
⇒m17247¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮11
⇒|m+7+4−1−2−7|=|m+1|⋮11⇒m∈∅
If n = 6,then m17256¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
divided by 11 with remainder 5
⇒m17251¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮11
⇒|m+7+5−1−2−1|=|m+8|⋮11⇒m=3
Hence,(m ; n) = (3 ; 6),so m + n = 9
-
See question detail
1962mn6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮72
.So we have :
+ 1962mn6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
is divisible by 8
⇒mn6¯¯¯¯¯¯¯¯¯¯⋮8⇒mn6¯¯¯¯¯¯¯¯¯¯⋮4⇒n∈{1;3;5;7;9}
+ 1962mn6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮9⇒24+m+n⋮9
- If n = 1,then 25+m⋮9⇒m=2
.
Because 216⋮8
,we choose (m ; n) = (2 ; 1)
- If n = 3,then 27+m⋮9⇒m=0;9
Because36⋮̸ 8;936⋮8
,we choose (m ; n) = (9 ; 3)
- If n = 5,then 29+m⋮9⇒m=7
Because 756⋮8̸
,we don't choose this case
- If n = 7,then 31+m⋮9⇒m=5
Because 576⋮8
,we choose (m ; n) = (5 ; 7)
- If n = 9,then 33+m⋮9⇒m=3
Because 396⋮̸ 8=49,5=99/2
,we don't choose this case
Hence,(m ; n) = (2 ; 1) ; (9 ; 3) ; (5 ; 7)
-
See question detail
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
divided by 8 with remainder 2
⇒n78¯¯¯¯¯¯¯¯
divided by 8 with remainder 2
=> n = 1 ; 3 ; 5 ; 7 ; 9
506mn78¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
⋮9⇒26 + m + n⋮9
If n = 1,then 27 + m⋮9⇒ m = 0 ; 9
If n = 3.then 29 + m⋮9⇒ m = 7
If n = 5,then 31 + m⋮9⇒ m = 5
If n = 7.then 33 + m⋮9⇒ m = 3
If n = 9,then 35 + m⋮9⇒ m = 1
Hence,(m ; n) = (0 ; 1) ; (9 ; 1) ; (7 ; 3) ; (5 ; 5) ; (3 ; 7) ; (1 ; 9)
-
See question detail
506mn78¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
divided by 8 with remainder 2
⇒n78¯¯¯¯¯¯¯¯
divided by 8 with remainder 2
=> n = 1 ; 3 ; 5 ; 7 ; 9
506mn78¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⋮9⇒26+m+n⋮9
If n = 1,then27+m⋮9⇒m=0;9
If n = 3.then 29+m⋮9⇒m=7
If n = 5,then 31+m⋮9⇒m=5
If n = 7.then 33+m⋮9⇒m=3
If n = 9,then 35+m⋮9⇒m=1
Hence,(m ; n) = (0 ; 1) ; (9 ; 1) ; (7 ; 3) ; (5 ; 5) ; (3 ; 7) ; (1 ; 9)
-
See question detail
3a+5b⋮13⇒2(3a+5b)⋮13or6a+10b⋮13
We have :13a+13b⋮13⇒(13a+13b)−(6a+10b)⋮13
⇒7a+3b⋮13
-
See question detail
Trịnh Đức Phát 22/03/2017 at 12:43We have:
⇒a=2017n−2016b
We have: 2a+2015b=2(2017n−2016b)+2015b=2.2017n−2017b⋮2017
Same as above. We hava: ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩3a+2014b=3.2017n−2.2017b⋮20174a+2013b=4.2017n−3.2017b⋮2017...2015a+2b=2015.2017n−2014.2017b
So that: A⋮2017.2017...2017
⇒A⋮20172014
-
See question detail
(*) 1+N=.....=x2/(x-2)2+4
We have x2 ≥
0 , (x-2)2+4 ≥
4 > 0
So 1+N ≥
0 => N ≥
-1 ;equality : x=0
(*)1-N=....=(x-4)2/(x-2)2+4
....... -> N ≤
1 , equality : x=4
-
See question detail
We have :
x2−2x+5=x2−2x+1+4
=(x−1)2+4≥4
⇒H=1x2−2x+5≤14
⇒MaxH=14
⇔(x−1)2=0
⇔x=1
-
See question detail
Use Cauchy's inequality for positive numbes a,b,c.
a+b≥2ab−−√,b+c≥2bc−−√,c+a≥2ca−−√
⇒(a+b)(b+c)(c+a)≥8ab−−√⋅bc−−√⋅ca−−√=8abc
⇒A=abc(a+b)(b+c)(c+a)≤18
MaxA=18⇔a=b=c>0
-
See question detail
There is something is wrong here
Change to :
We have a2+b2≥5
=> 9−(a2+b2)≤4
=> 2ab≤4
=> ab≤2
<=> a2b2≥4
=> 4a2b2≥16