MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 578 )
  • See question detail

    Change number 6

    We have : 

    26 - 63 = 64 - 63 = 1

    Answer : 1

  • See question detail

    (1 + 2 + 3 + ... + 99) + 10

    = 4950 + 10 = 4960

  • See question detail

    3a2 = 2a3

    => a3a2

     = 32 => a = 32

  • See question detail

    We see that, if x satisfies the equation above => 

    −8<3x+4<−32

     and 8<3x+4<32

    So we have 28⋅2=56

     possible values of x.

    Solve each equations we will have the exact values of x.

  • See question detail

    450=2100=210.210=(...4).(...4)=...6

    So .......

  • See question detail

    Without loss of generality, we may assume gcd(a,b,c) = 1.

    (otherwise, if d=gcd(a,b,c) the for a'=a/d, b'=b/d, c'=c/d, the equation still holds for a', b', c' and a'b'c' is still a cube if only if abc is a cube).

    We multiply equation by abc, we have:

      a2c+b2a+c2b=3abc

    (*)

    if abc=±1

    , the problem is solved.

    Otherwise, let p be a prime divisor of abc. Since gcd(a,b,c)=1, the (*) implies that p divides exactly two of a, b,c. By symetry, we may assume p divides a, b but not c. Suppose that the lagest powers of p dividing a, b are m, n, respecively.

    If n < 2m, then n+1≤2m

      and pn+1| a2c,b2c,3abc. Hence pn+1|c2b, forcing p|c (a contradiction). If n > 2m, then n≥2m+1 and p2m+1|c2b,b2a,3abc. Hence p2m+1|a2c, forcing p|c (a contradicton). Therefore n = 2m and abc=Πp3m, p|abc

    , is a cube.

  • See question detail

    For (x2−1)(x2−4)(x2−7)(x2−10)<0

    => x2−1;x2−4;x2−7;x2−10

     have a positive and 3 negative or a nagative and 3 positive

    * If have a positive and 3 negative:

    => x2 - 1 > 0 > x2 - 4 > x2 - 7 > x2 - 10

    => x2 - 1 > 0 and x2 - 4 < 0

    => 1 < x2 < 4 => x2 can equal 2 or 3.

     But x is integer so x2 can't equal 2 or 3

    * If have a negative and 3 positive:

    => x2 - 1 > x2 - 4 > x2 - 7 > 0 > x2 - 10

    => x2 - 7 > 0 and x2 - 10 < 0

    => 7 < x2 < 10

    => x2 = 9 because x is integer

    => x = ±3

    But x is the positive integer => x = 3

    Equivalent disequations:(x4−11x2+10)(x4−11x2+28)<0

    Put x4−11x2+10=t

    We have:t(t+18)<0

    TH1:{t>0t+18<0⇒{t>0t<−18<0

     (loại)

    TH2:{t<0t+18>0⇒{t<0t>−18

    ⇒t∈{−17,−16,...........,−1}

    It's easy here, you try it yourself......

    For (x2−1)(x2−4)(x2−7)(x2−1)<0

    => In this four numbers, have:

    [a positive number and 3 negative numbersa negative number and 3 positive numbers

    * If have a positive number and 3 negative numbers:

    => x2-1 > 0 > x2-4 > x2-7 > x2-10

    => x2 - 1 > 0 and x2 < 4

    => 1 < x2 < 4 => No number is satisfy

    * If have a negative number and 3 positive numbers:

    => x2-1 > x2-4 > x2-7 > 0 > x2-10

    => x2-7 > 0 and x2-10 < 0

    => 7 < x2 < 10

    => x2 = 9 because x is a positive integer <=> x2 is a positive integer too.

    => x = 3 because x is a positive integer

  • See question detail

    This is easy. Each number is formed by reading out the digits, grouping digits together and saying the number of identical digits followed by the digit.

    1 is read as "one one" (one number 1) -> 11

    11 is read as "two ones" (two number 1) -> 21

    21 is read as "one two, one one" (one number 2 then one number 1) -> 1211

    1211 is read as "one one, one two, two ones" (one number 1, then one number 2, then two number 1 -> 111221.

    SO THE NEXT NUMBER IS: "three one, two two, one one" -> 312211

  • See question detail

    We have:

    49 = 7 . 7 ( from the number 77)

    36 = 4 . 9 (from the number 49)

    18 = 3 . 6 (from the number 36)

    SO THE NEXT NUMBER IS: 1 . 8 = 8

  • See question detail

    We have:

    2 = 1 + 1

    4 = (1 + 2) + 1

    7 = (1 + 2 + 3) + 1

    11 = (1 + 2 + 3 + 4) + 1

    16 = (1 + 2 + 3 + 4 + 5) + 1

    SO THE NEXT NUMBER IS: (1 + 2 + 3 + 4 + 5 + 6) + 1 = 22

    P/s: Your question is incorrect

    It must be: "FIND THE MISSING NUMBER" or "FIND THE NUBER THAT IS MISSING", not number missing

  • See question detail

    123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)

    =12(21.2.3+22.3.4+...+2(n−1)n(n+2))

    =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))

    =12(12−1n(n+2))

    =14.12n(n+2)

    ⇒123+133+...+1n3<14−12n(n+2)<14

    ⇒123+133+...+1n3<14

    So 123+133+...+1n3<14

    123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14

    123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)

    =12(21.2.3+22.3.4+...+2(n−1)n(n+2))
    =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14

  • See question detail

    63×84=2×2=4

    38×56=1548=516

    10812×881=9×881=89

    123×133688=16,359688

  • See question detail

    410=40100=40%

    23100=23%

    2541000=25.4100=25.4%

    789010000=78.9100=78.9%

  • See question detail

    The area of the square is: 38⋅38=382=1444(m2)

  • See question detail

    If you rearrange it, the sum of the digits is still 15, which makes it impossible to rearrange the digits of 3255 to make a number that is not a multiple of 3

  • See question detail

    But i also have the answer

               The area of the rectangle is :

                        8 x 9 = 72 ( cm2 )

                                  Answer : 72 cm2

  • See question detail

    We only need two number: 17 and 16

    (17 + 16 + 17) + (17 + 16 + 17)

  • See question detail

    AUTO ANSWER (AFTER SEVERAL DAYS): 

    This is not a hard question, but many can't solve it. Because they thought: "The question is wrong!". Exactly, 99 = 72 + 27; 45 = 27 + 18; 39 = 18 + 21; So the ?? must be 15. But why does 21 = 13 + 7? We have gone into the wrong MINDWAY.  Let's think of another way. We have 9 + 9 + 7 + 2 = 27 (Sum of the digits in line 1, row 1 + sum of the digits in line 2, row 1 = line 2, row 2). Because 2 + 8 + 1 + 2 = 13 and 3 + 6 + 2 + 1 = 12 so the answer correct is 12. 

    (#560 - 1000 best IQ questions in history)

  • See question detail

    We have: 1 + 5 = 2 + 4 = 6 (there are no 2 number-3 cards)

    => A has (1;5) or (2;4) cards [1]

    B said the difference between two cards is 5

    => B has (1;6), (2;7), (3;8) or (4;9) cards [2]

    We have: 2*9 = 3*6 = 18

    => C has (2;9) or (3;6) cards [3]

    We have: 2 = 2*1; 4 = 2*2; 6 = 2*3; 8 = 2*4

    => D has (1;2), (2;4), (3;6) or (4;8) cards [4]

    If A has (2;4) cards => Unsatisfy

    If A has (2;4) cards -> B has (1;6) or (3;8) cards

     - If B has (1;6) cards => Unsatisfy for C

     - If B has (3;8) cards => Unsatisfy for C, too

    => A has (1;5) cards

    => B has (2;7), (3;8) or (4;9) cards

    - If B has (2;7) cards -> C has (3;6) cards -> D has (4;8) cards -> The number of the remaining card is 9.

    - If B has (3;8) cards -> C has (2;9) cards -> Unsatisfy for D

    - If B has (4;9) cards -> C has (3;6) cards -> Unsatisfy for D

    So the number of the remaining card is 9

  • See question detail

    m.n=(999...99).(888...88)

                    2015            2015

             =(888...88).(1000...00−1)

                    2015             2016

            =(888...88000..00)−(888...88)

                         4030                      2015

            =888...887111...112

                   2014         2014

  • View more →
Questions ( 57 )
  • Calculate \(p=\dfrac{3x-2y}{3x+2y}\) know x , y satisfy x < 2y and  \(9x^2+4y^2=20xy\)

  • Let x , y , z > 0 .Validity : \(p=\dfrac{x^{2018}+1}{x^{2018}+y^{2018}+z^{2018}+3}\)  know  \(x^3+y^3+z^3=3xyz\)

  • Let a, b, c be other numbers 0 satisfying : \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{matrix}\right.\)

    Calculate  \(p=a^{2019}+b^{2019}+c^{2019}\)

  • Let a , b , c be positive numbers . Prove that : \(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{1}{2}\left(a+b+c\right)\)

  • Let x , y , z be positive real numbers . Prove that \(\dfrac{x^2-z^2}{y+z}+\dfrac{y^2-x^2}{z+x}+\dfrac{z^2-y^2}{x+y}\ge0\)

  • Let a , b, c be a positive real numbers , prove that :

    \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{1}{\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)

    What is the condition for the equality ?

    thank you

  • Solve the following system of equations :

    \(\left\{{}\begin{matrix}4\sqrt{3x+4y}+\sqrt{8-x+y}=23\\3\sqrt{8-x+y}-2\sqrt{38+6x-13y}=5\end{matrix}\right.\)

    thank you

  • Given the square triangle ABC at A , the AD curve ( D of BC ) .

    Prove that \(\dfrac{\sqrt{2}}{AD}=\dfrac{1}{AB}+\dfrac{1}{AC}\)

  • A trapezoid has an area of 1 . Ask the diagonal of this trapezoid is the smallest .

  • For the acute triangle ABC , the circle (O) has a fixed BC ( BC ≠ 2R ) , H is the center. Determine the position of A to: S = HA + HB + HC is the maximum value.

  • Given the following equation :

    \(2x^4-4x^3+\left(4-a\right)x^2+\left(a-2\right)x+a-a^2=0\)

    Prove that the equation has only one negative root when \(a>1\)

  • A NEW YEAR AFTER KHANG THINH VUONG 2018

  • YOU'RE IN TALKING TO XUAN SANG
    THE MOMENT OF SMALL COMMUNITY

  • WE HAVE COME BACK TO 2018

  • ONE YEAR ANNIVERSARY OF 2018 PROFESSIONAL WAY

  • YEAR OF THE YEAR 2018

  • HAPPY NEW YEAR .

    WELCOME TO YOU THAT YOU LIKE HAVING A GREAT YEAR, GOOD LESS THANKS. "HELP YOU SOLVE MATH" THAT WAS WRONG.

  • Solve the following equation with the parameter m :

    \(\dfrac{x+1}{x-m}+\dfrac{x+m}{x-1}=2\)

  • solve the equation :

    \(\dfrac{1}{x\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+6\right)}=\dfrac{1}{9}\)

     

  • solving the equation with a , b , c is the parameter : ( abc is different 0 )

    \(\dfrac{x-b-c}{a}+\dfrac{x-a-c}{b}+\dfrac{x-a-b}{c}=3\)

  • View more →
© HCEM 10.1.29.225
Crafted with by HCEM