MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 578 )
  • See question detail

    We have:

    CD.DA = 24; FD⋅DA2=9⇒FD⋅DA=18

    => FDCD=1824=34⇒FC=14CD

    AB⋅BE2=4⇒AB⋅BE=8

    ⇒BEBC=824=13⇒EC=23BC

    ⇒SΔEFC=14CD⋅23BC2=16.242=42=2(cm2)

    ⇒SΔAEF=24−9−4−2=13(cm2)

  • See question detail

    202 + ⊠⊠⊠ + ⊠⊠⊠ = 2002

    => ⊠⊠⊠ + ⊠⊠⊠ = 2002 - 202 = 1800

    We have: 819 + 981 = 1800; 849 + 951 = 1800;.........

    So the sum of all the 6 missing digits are: 8 + 1 + 9 + 9 + 8 + 1 = 8 + 4 + 9 + 9 + 5 + 1 = ... = 36

  • See question detail

    (Solution 1)We have: 1+1⋅2⋅3⋅4−−−−−−−−−−−√=1+1⋅4=5

    1+2⋅3⋅4⋅5−−−−−−−−−−−√=1+2⋅5=11

    .........

    1+204⋅205⋅206⋅207−−−−−−−−−−−−−−−−−−√=1+204⋅207=42229

    (Solution 2) We have: 1+1⋅2⋅3⋅4−−−−−−−−−−−√=2⋅3−1=5

    1+2⋅3⋅4⋅5−−−−−−−−−−−√=3⋅4−1=11

    ..............

    1+204⋅205⋅206⋅207−−−−−−−−−−−−−−−−−−√=205⋅206−1=42229

    Alone has done solutions 3+4.

    Solution 1:1+204.205.206.207−−−−−−−−−−−−−−−−√=1783288441−−−−−−−−−√=42229

    Solution 2:1+n(n+1)(n+2)(n+3)−−−−−−−−−−−−−−−−−−−−−−√=1+(n2+3n)(n2+3n+2)−−−−−−−−−−−−−−−−−−−−−−√=(n2+3n)2+2.(n2+3n)+1−−−−−−−−−−−−−−−−−−−−−−−√

    =(n2+3n+1)2−−−−−−−−−−−−√=n2+3n+1

    With n=204 then 1+204.205.206.207−−−−−−−−−−−−−−−−√=2042+3.204+1=42229

  • See question detail

    A=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)

    =(x2+5x)2−62=(x2+5x)2−36≥−36

    Then the minimum of A=-36

  • See question detail

    Call A=a+b-c

    We have |a|=2 ⇒

     a = 2 or a = (-2)

    |b|= 3 ⇒

     b = 3 or b = (-3)

    |c|= 4 ⇒

     c = 4 or c = (-4)

    ⇒

    a = 2; b = 3;c = 4 or a = -2;b = -3;c = -4

    But a > b > c ( theme for )
    So a = -2;b = -3;c = -4 ( because -2 > -3 > -4 )

    Substitute a = -2;b = -3;c = -4 to A, we have :

    A= -2+(-3)-(-4)

    ⇒

    A= -2-3+4

    ⇒

    A= -5+4

    ⇒

    A= -1 

    ⇒

     a+b-c= -1 in a = -2;b = -3;c = -4

     
     

  • See question detail

    −3≤a≤0⇒{0≤a+3a−3<0⇒{|a+3|=a+3|a−3|=−(a−3)

    ⇒|a+3|+|a−3|=a+3−(a−3)=6

  • See question detail

    |a|=7;|b|=5⇒(a;b)=(7;5);(−7;5);(7;−5);(−7;−5)

    We have :|a−b|=b−a⇒a−b≤0⇒a≤b

    So (a ; b) = (-7 ; 5) ; (-7 ; -5)

    => a + b = -2 or a + b = -12

  • See question detail

    −1≤a≤0⇒{0≤a+1a−1<0⇒{|a+1|=a+1|a−1|=−(a−1)

    ⇒|a+1|+|a−1|=a+1−(a−1)=2

  • See question detail

    {a<0ab<0⇒b>0⇒b>a⇒{b−a+1>1>0a−b−3<−3<0

    ⇒{|b−a+1|=b−a+1|a−b−3|=−(a−b−3)

    ⇒|b−a+1|−|a−b−3|=b−a+1+a−b−3=−2

  • See question detail

    Put A=|m−2|+|m+3|

    We have: A=|m−2|+|m+3|=|2−m|+|m+3|

    Apply the inequality |a|+|b|≥|a|+|b|

    , we have:

    A≥|2−m+m+3|=|5|=5

    The "=" sign occurs when {2−m≥0m+3≥0⇒{m≤2m≥−3⇒−3≤m≤2

    So MINA=5

     when −3≤m≤2

    Find minimize |m−2|+|m+3|

     ?

    By inequality |a|+|b|≥|a+b|

     we have:

    |m−2|+|m+3|=|2−m|+|m+3|

    ≥|2−m+m+3|=5

    Done !

  • See question detail

    We have :

    ⎧⎩⎨⎪⎪b<ab<0c<0⇒⎧⎩⎨⎪⎪b−a<0b+c<0c<0

    ⇒⎧⎩⎨⎪⎪|b−a|=a−b|b+c|=−b−c|c|=−c

    => |b - a| + |b + c| + |c| = a - b - b - c - c = a - 2b - 2c

  • See question detail

    |x−3|+(x+3)=0

    Case 1 :x−3≥0⇔x≥3

    ,so we have :

    x - 3 + x + 3 = 0 => 2x = 0 => x = 0 (doesn't satisfy x≥3

    )

    Case 2 :x−3<0⇔x<3

    ,so we have :

    3 - x + x + 3 = 0 => 6 = 0 (absurd)

    So there are no values of x

  • See question detail

    Case 1 :x<−12⇔{2x−3<−4<02x+1<0

    ⇒3−2x−2x−1=4⇒4x=−2⇒x=−12

    (asburd)

    Case 2 :−12≤x<32⇒{2x−3<02x+1≥0

    ⇒3−2x+2x+1=4⇒4=4

     (true)

    Case 3 :x≥32⇒{2x−3≥02x+1≥4>0

    ⇒2x−3+2x+1=4⇒4x−2=4⇒4x=6⇒x=32

    (true)

    So−12≤x≤32

  • See question detail

    ||4x-2| - 2| = 4

    Scenerio (S.c.) 1:

    |4x - 2| - 2 = 4

    |4x - 2| = 6

    S.c. 1.1:

    4x - 2 = 6

    4x = 8

    x = 2.

    S.c. 1.2:

    4x - 2 = -6

    4x = -4

    x = -1.

    S.c. 2:

    |4x - 2| - 2 = -4

    |4x - 2| = -2

    |4x - 2| is always larger or equal to 0, so there is no value of x in this scenerio.

    Thus, the values of x are 2; -1.

  • See question detail

    −1≤a≤0⇒{0≤a+1a−1<0⇒{|a+1|=a+1|a−1|=1−a

    => |a + 1| + |a - 1| = a + 1 + 1 - a = 2

  • See question detail

    We have:

    |a−1001|≥0

    ⇒|a−1000|≥1

    ⇒|a−1000|+|a−1001|≥1+0=1

    => Smallest value of |a-1000| + |a - 1001| = 1 at:

    * a = 1001 and |a-1000| + |a - 1001| = 1 + 0 = 1

    * a = 1000 and |a-1000| + |a - 1001| = 0 + 1 = 1

    Are you OK?

  • See question detail

    Change: 30%=310

    Linda kept: 1−(15+310)=12

     of the 100 dollars as cash.

  • See question detail

    We have: S=(1101+1102+...+1150)+(1151+1152+...+1200)

                      >(1150+1150+...+1150)+(1200+1200+...+1200)

                                            50                                                      50

                      =50150+50200=13+14=712

    So S>712

    .

  • See question detail

    We have: A=(x+y)(x+2y)(x+3y)(x+4y)+y4

                        =[(x+y)(x+4y)][(x+2y)(x+3y)]+y4

                        =(x2+5xy+4y2)(x2+5xy+6y2)+y4

                        =[(x2+5xy+5y2)−y2][(x2+5xy+5y2)+y2]+y4

                        =(x2+5xy+5y2)2−y4+y4

                        =(x2+5xy+5y2)2

    So A is a square number.

  • See question detail

    We can easily prove that P>0.

    We have: P=122+132+...+120132<11.2+12.3+...+12012.2013

                                                                     =1−12013<1

    ⇒0<P<1

    So P isn't a integer.

  • First
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM