-
See question detail
We have:
CD.DA = 24; FD⋅DA2=9⇒FD⋅DA=18
=> FDCD=1824=34⇒FC=14CD
AB⋅BE2=4⇒AB⋅BE=8
⇒BEBC=824=13⇒EC=23BC
⇒SΔEFC=14CD⋅23BC2=16.242=42=2(cm2)
⇒SΔAEF=24−9−4−2=13(cm2)
-
See question detail
202 + ⊠⊠⊠ + ⊠⊠⊠ = 2002
=> ⊠⊠⊠ + ⊠⊠⊠ = 2002 - 202 = 1800
We have: 819 + 981 = 1800; 849 + 951 = 1800;.........
So the sum of all the 6 missing digits are: 8 + 1 + 9 + 9 + 8 + 1 = 8 + 4 + 9 + 9 + 5 + 1 = ... = 36
-
See question detail
(Solution 1)We have: 1+1⋅2⋅3⋅4−−−−−−−−−−−√=1+1⋅4=5
1+2⋅3⋅4⋅5−−−−−−−−−−−√=1+2⋅5=11
.........
1+204⋅205⋅206⋅207−−−−−−−−−−−−−−−−−−√=1+204⋅207=42229
(Solution 2) We have: 1+1⋅2⋅3⋅4−−−−−−−−−−−√=2⋅3−1=5
1+2⋅3⋅4⋅5−−−−−−−−−−−√=3⋅4−1=11
..............
1+204⋅205⋅206⋅207−−−−−−−−−−−−−−−−−−√=205⋅206−1=42229
Alone has done solutions 3+4.
Solution 1:1+204.205.206.207−−−−−−−−−−−−−−−−√=1783288441−−−−−−−−−√=42229
Solution 2:1+n(n+1)(n+2)(n+3)−−−−−−−−−−−−−−−−−−−−−−√=1+(n2+3n)(n2+3n+2)−−−−−−−−−−−−−−−−−−−−−−√=(n2+3n)2+2.(n2+3n)+1−−−−−−−−−−−−−−−−−−−−−−−√
=(n2+3n+1)2−−−−−−−−−−−−√=n2+3n+1
With n=204 then 1+204.205.206.207−−−−−−−−−−−−−−−−√=2042+3.204+1=42229
-
See question detail
A=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)
=(x2+5x)2−62=(x2+5x)2−36≥−36
Then the minimum of A=-36
-
See question detail
Call A=a+b-c
We have |a|=2 ⇒
a = 2 or a = (-2)
|b|= 3 ⇒
b = 3 or b = (-3)
|c|= 4 ⇒
c = 4 or c = (-4)
⇒
a = 2; b = 3;c = 4 or a = -2;b = -3;c = -4
But a > b > c ( theme for )
So a = -2;b = -3;c = -4 ( because -2 > -3 > -4 )Substitute a = -2;b = -3;c = -4 to A, we have :
A= -2+(-3)-(-4)
⇒
A= -2-3+4
⇒
A= -5+4
⇒
A= -1
⇒
a+b-c= -1 in a = -2;b = -3;c = -4
-
See question detail
−3≤a≤0⇒{0≤a+3a−3<0⇒{|a+3|=a+3|a−3|=−(a−3)
⇒|a+3|+|a−3|=a+3−(a−3)=6
-
See question detail
|a|=7;|b|=5⇒(a;b)=(7;5);(−7;5);(7;−5);(−7;−5)
We have :|a−b|=b−a⇒a−b≤0⇒a≤b
So (a ; b) = (-7 ; 5) ; (-7 ; -5)
=> a + b = -2 or a + b = -12
-
See question detail
−1≤a≤0⇒{0≤a+1a−1<0⇒{|a+1|=a+1|a−1|=−(a−1)
⇒|a+1|+|a−1|=a+1−(a−1)=2
-
See question detail
{a<0ab<0⇒b>0⇒b>a⇒{b−a+1>1>0a−b−3<−3<0
⇒{|b−a+1|=b−a+1|a−b−3|=−(a−b−3)
⇒|b−a+1|−|a−b−3|=b−a+1+a−b−3=−2
-
See question detail
Put A=|m−2|+|m+3|
We have: A=|m−2|+|m+3|=|2−m|+|m+3|
Apply the inequality |a|+|b|≥|a|+|b|
, we have:
A≥|2−m+m+3|=|5|=5
The "=" sign occurs when {2−m≥0m+3≥0⇒{m≤2m≥−3⇒−3≤m≤2
So MINA=5
when −3≤m≤2
Find minimize |m−2|+|m+3|
?
By inequality |a|+|b|≥|a+b|
we have:
|m−2|+|m+3|=|2−m|+|m+3|
≥|2−m+m+3|=5
Done !
-
See question detail
We have :
⎧⎩⎨⎪⎪b<ab<0c<0⇒⎧⎩⎨⎪⎪b−a<0b+c<0c<0
⇒⎧⎩⎨⎪⎪|b−a|=a−b|b+c|=−b−c|c|=−c
=> |b - a| + |b + c| + |c| = a - b - b - c - c = a - 2b - 2c
-
See question detail
|x−3|+(x+3)=0
Case 1 :x−3≥0⇔x≥3
,so we have :
x - 3 + x + 3 = 0 => 2x = 0 => x = 0 (doesn't satisfy x≥3
)
Case 2 :x−3<0⇔x<3
,so we have :
3 - x + x + 3 = 0 => 6 = 0 (absurd)
So there are no values of x
-
See question detail
Case 1 :x<−12⇔{2x−3<−4<02x+1<0
⇒3−2x−2x−1=4⇒4x=−2⇒x=−12
(asburd)
Case 2 :−12≤x<32⇒{2x−3<02x+1≥0
⇒3−2x+2x+1=4⇒4=4
(true)
Case 3 :x≥32⇒{2x−3≥02x+1≥4>0
⇒2x−3+2x+1=4⇒4x−2=4⇒4x=6⇒x=32
(true)
So−12≤x≤32
-
See question detail
||4x-2| - 2| = 4
Scenerio (S.c.) 1:
|4x - 2| - 2 = 4
|4x - 2| = 6
S.c. 1.1:
4x - 2 = 6
4x = 8
x = 2.
S.c. 1.2:
4x - 2 = -6
4x = -4
x = -1.
S.c. 2:
|4x - 2| - 2 = -4
|4x - 2| = -2
|4x - 2| is always larger or equal to 0, so there is no value of x in this scenerio.
Thus, the values of x are 2; -1.
-
See question detail
−1≤a≤0⇒{0≤a+1a−1<0⇒{|a+1|=a+1|a−1|=1−a
=> |a + 1| + |a - 1| = a + 1 + 1 - a = 2
-
See question detail
We have:
|a−1001|≥0
⇒|a−1000|≥1
⇒|a−1000|+|a−1001|≥1+0=1
=> Smallest value of |a-1000| + |a - 1001| = 1 at:
* a = 1001 and |a-1000| + |a - 1001| = 1 + 0 = 1
* a = 1000 and |a-1000| + |a - 1001| = 0 + 1 = 1
Are you OK?
-
See question detail
Change: 30%=310
Linda kept: 1−(15+310)=12
of the 100 dollars as cash.
-
See question detail
We have: S=(1101+1102+...+1150)+(1151+1152+...+1200)
>(1150+1150+...+1150)+(1200+1200+...+1200)
50 50
=50150+50200=13+14=712
So S>712
.
-
See question detail
We have: A=(x+y)(x+2y)(x+3y)(x+4y)+y4
=[(x+y)(x+4y)][(x+2y)(x+3y)]+y4
=(x2+5xy+4y2)(x2+5xy+6y2)+y4
=[(x2+5xy+5y2)−y2][(x2+5xy+5y2)+y2]+y4
=(x2+5xy+5y2)2−y4+y4
=(x2+5xy+5y2)2
So A is a square number.
-
See question detail
We can easily prove that P>0.
We have: P=122+132+...+120132<11.2+12.3+...+12012.2013
=1−12013<1
⇒0<P<1
So P isn't a integer.