MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 46 )
  • See question detail

    We have 2 equations : 

    \(\left\{{}\begin{matrix}3x-2y=5\\2y+3z=1\end{matrix}\right.\Leftrightarrow\left(3x-2y\right)+\left(2y+3z\right)=5+1\)

    \(\Leftrightarrow3\left(x+z\right)=6\Leftrightarrow x+z=2\)

    We also have \(x-z=4\)

    \(\Leftrightarrow x=\dfrac{2+4}{2}=3;z=-1\)

    Therefore; x = 3 ; z = -1 and y\(\in R\)

  • See question detail

    Let $ x be the price of a shirt; so a blouse costs : $ \(\dfrac{3}{5}x\)

    We have the equation :

    \(2x+4.\left(\dfrac{3}{5}x\right)=110\)

    \(\Leftrightarrow2x+\dfrac{12}{5}x=110\)

    \(\Leftrightarrow\dfrac{22}{5}x=110\)

    \(\Leftrightarrow x=\dfrac{110.5}{22}=25\) 

    The price of 6 such shirts is : \(25.6=150\)

    Answer : $ 150.

  • First
  • 1
  • 2
  • 3
© HCEM 10.1.29.240
Crafted with by HCEM