Answers ( 46 )
-
See question detail
We have 2 equations :
\(\left\{{}\begin{matrix}3x-2y=5\\2y+3z=1\end{matrix}\right.\Leftrightarrow\left(3x-2y\right)+\left(2y+3z\right)=5+1\)
\(\Leftrightarrow3\left(x+z\right)=6\Leftrightarrow x+z=2\)
We also have \(x-z=4\)
\(\Leftrightarrow x=\dfrac{2+4}{2}=3;z=-1\)
Therefore; x = 3 ; z = -1 and y\(\in R\)
-
See question detail
Let $ x be the price of a shirt; so a blouse costs : $ \(\dfrac{3}{5}x\)
We have the equation :
\(2x+4.\left(\dfrac{3}{5}x\right)=110\)
\(\Leftrightarrow2x+\dfrac{12}{5}x=110\)
\(\Leftrightarrow\dfrac{22}{5}x=110\)
\(\Leftrightarrow x=\dfrac{110.5}{22}=25\)
The price of 6 such shirts is : \(25.6=150\)
Answer : $ 150.