MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Questions ( 9 )
  • Given that .
    Calculate: 
    =

  •  and  are positive integers such that , where  is a prime number.
    The number of pairs  is ... ?

  • The sum of all possible numbers \(n\) such that \(n^2+n+1589\) is a perfect square is ... ?

  • \(\dfrac{1}{\left(x+29\right)^2}+\dfrac{1}{\left(x+30\right)^2}=\dfrac{5}{4}\)

    What is the product of all real solutions to the equation above?

  • ABC is a triangle such that \(\widehat{A}=2\widehat{B}\). Given that AC = b and AB = c then BC = ?

    \(\left[{}\begin{matrix}\sqrt{b^2+bc}\\\sqrt{c^2+bc}\\\sqrt{b^2+c^2}\\\sqrt{2bc}\end{matrix}\right.\)

  • How many positive numbers \(n\) satisfy that \(n^3-3n^2+2\) is a prime number?

  • Find the maximum and the minimum of \(N=\dfrac{4x-8}{x^2-4x+8}\).

  • Help me !

    Given 2011 natural numbers \(x_1,x_2,x_3,...,x_{2011}\) satisfy the expression below :

    \(\dfrac{1}{(x_1)^{11}}+\dfrac{1}{(x_2)^{11}}+\dfrac{1}{(x_3)^{11}}+...+\dfrac{1}{\left(x_{2011}\right)^{11}}=\dfrac{2011}{2048}\)

    Calculate : \(M=\dfrac{1}{\left(x_1\right)^1}+\dfrac{1}{\left(x_2\right)^2}+...+\dfrac{1}{\left(x_{2011}\right)^{2011}}\)

  • Help me, I have to finish my homework today :

    Solve the equations :

    \(\dfrac{x^2-2x+2}{x-1}+\dfrac{x^2-8x+20}{x-4}=\dfrac{x^2-6x+16}{x-3}+\dfrac{x^2-4x+2}{x-2}\)

    I know the answer is 10 000 000 but I don't know how to solve this problem.

© HCEM 10.1.29.225
Crafted with by HCEM