MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 46 )
  • See question detail

    First, \(x^2\left(x-3\right)\ne0\) and \(x-9\ne0\Leftrightarrow x\ne0,3,9\)

    Then we have \(\left\{{}\begin{matrix}x^2>0\\\dfrac{x^2\left(x-3\right)}{x-9}< 0\end{matrix}\right.\Leftrightarrow\dfrac{x-3}{x-9}< 0\)

    We also have \(x-9< x-3\Leftrightarrow\left\{{}\begin{matrix}x-3>0\\x-9< 0\end{matrix}\right.\)

    \(\Leftrightarrow3< x< 9\)

  • See question detail

    Suppose there are \(a\) values of y = \(k\) satisfy the equation above.

    When k is satisfied the equation, -k is also satisfied the equation, because \(y^4=k^4=\left(-k\right)^4\)

    So the sum of all values of y  is \(a.k+a.\left(-k\right)=0\)

    Ans : 0. 

  • See question detail

    Applying the Ceva theorem, we have :

    \(\dfrac{AN}{AP}.\dfrac{BP}{BM}.\dfrac{CM}{CN}=1\)

    Substituting the values of AN = 4, CN = 3, CM = 2, BM = 1 and AP = 5, we have :

    \(\dfrac{4.BP.2}{5.1.3}=1\Leftrightarrow\dfrac{6}{15}BP=1\Leftrightarrow BP=\dfrac{15}{6}=\dfrac{5}{2}=2,5\)

    Ans : 2,5.

  • See question detail

    \(f\left(a\right)=f\left(b\right)\)

    \(\Leftrightarrow a^2+a^3+b=b^2+ab^2+b\)

    \(\Leftrightarrow a^2\left(a+1\right)=b^2\left(a+1\right)\)

    \(\Leftrightarrow a^2\left(a+b\right)-b^2\left(a+1\right)=0\)

    \(\Leftrightarrow\left(a^2-b^2\right)\left(a+1\right)=0\)

    \(\Leftrightarrow\left(a-b\right)\left(a+b\right)\left(a+1\right)=0\)

    a and b are two different real numbers, so a - b \(\ne0\)

    \(\Leftrightarrow\left(a+b\right)\left(a+1\right)=0\)

    Scenario 1 :

    \(a+b=0\) then a = - b

    Substituting the value of a = - b, we have :

    \(f\left(x\right)=x^2+ax+\left(-a\right)\)

    \(f\left(2\right)=4+2a-a=4+a\)

    Scenario 2 :

    \(a+1=0\Leftrightarrow a=-1\)

    Substituting the value of a = -1, we have :

    \(f\left(2\right)=4-2+b=b+2\)

  • See question detail

    From \(a=\sqrt{6+\sqrt{6+\sqrt{6+...}}}\) we have \(\left\{{}\begin{matrix}a>0\\a^2=6+\sqrt{6+\sqrt{6+...}}=6+a\end{matrix}\right.\)

    \(\Leftrightarrow a^2-6-a=0\)

    \(\Leftrightarrow\left(a^2-2.\dfrac{1}{2}a+\dfrac{1}{4}\right)-6,25=0\)

    \(\Leftrightarrow\left(a-\dfrac{1}{2}\right)^2=6,25\)

    \(\Leftrightarrow\left[{}\begin{matrix}a-\dfrac{1}{2}=\dfrac{5}{2}\\a-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-2\end{matrix}\right.\)

    \(a>0\Leftrightarrow a=3\)

    Again, we have b > 0 and \(b^2=9-b\Leftrightarrow b^2+b-9=0\)

    \(\Leftrightarrow\left(b+\dfrac{1}{2}\right)^2-9,25=0\)

    \(\Leftrightarrow\left(b+\dfrac{1}{2}\right)^2=9,25\)

    \(b>0\Leftrightarrow b+\dfrac{1}{2}>0\)

    \(\Leftrightarrow b+\dfrac{1}{2}=\dfrac{\sqrt{37}}{2}\)

    Then \(b=\dfrac{\sqrt{37}}{2}-\dfrac{1}{2}=\dfrac{\sqrt{37}-1}{2}\)

    \(\Rightarrow ab=3.\dfrac{\sqrt{37}-1}{2}=\dfrac{3\sqrt{37}-3}{2}\)

  • See question detail

    The NUMBER of pairs (m;n) ... 

  • See question detail

    \(D=-\dfrac{1}{7}\left(9\dfrac{1}{2}-9,75\right):\dfrac{2}{7}+0,625:1\dfrac{2}{3}\)

    \(=\left(-1\right).\dfrac{1}{7}:\dfrac{2}{7}.\left(9,5-9,75\right)+\dfrac{5}{8}:\dfrac{5}{3}\)

    \(=-\dfrac{1}{2}.\left(-0,25\right)+\dfrac{3}{8}\)

    \(=\dfrac{1}{2}+\dfrac{3}{8}=\dfrac{4+3}{8}=\dfrac{7}{8}\)

  • See question detail

    \(C=1\dfrac{5}{18}:\dfrac{5}{18}\left(\dfrac{1}{15}+1\dfrac{1}{12}\right)\)

    \(=\dfrac{23}{18}:\dfrac{5}{18}:\left(\dfrac{1}{15}+\dfrac{13}{12}\right)\)

    \(=\dfrac{23}{5}:\dfrac{23}{20}=\dfrac{20}{5}=4\)

  • See question detail

    \(\left(x+2\right)^2=28^2\)

    \(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{28}=2\sqrt{7}\\x+2=-2\sqrt{7}\end{matrix}\right.\)

    \(\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{7}-2\\x=-2\sqrt{7}-2\end{matrix}\right.\)

  • See question detail

    \(B=\dfrac{2\dfrac{5}{6}+\dfrac{4}{9}}{10\dfrac{1}{12}-9\dfrac{1}{2}}\)

    \(=\dfrac{\dfrac{17}{6}+\dfrac{4}{9}}{\dfrac{121}{12}-\dfrac{19}{2}}\)

    \(=\dfrac{\dfrac{51}{18}+\dfrac{8}{18}}{\dfrac{121}{12}-\dfrac{114}{12}}\)

    \(=\dfrac{\dfrac{59}{8}}{\dfrac{7}{12}}\)

    \(=\dfrac{59.12}{7.8}=\dfrac{177}{14}\)

    Ans : \(B=\dfrac{177}{14}\).

  • See question detail

    We have the formulas : \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)

    \(\Rightarrow A=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{2017}\left(1+2+...+2017\right)\)

    \(=1+\dfrac{\dfrac{2.3}{2}}{2}+\dfrac{\dfrac{3.4}{2}}{3}+...+\dfrac{\dfrac{2017.2018}{2}}{2017}\)

    \(=1+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+...+\dfrac{2018}{2}\)

    \(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+...+\dfrac{2018}{2}\)

    \(=\left(\dfrac{1}{2}+\dfrac{2}{2}+\dfrac{3}{2}+...+\dfrac{2018}{2}\right)-\dfrac{1}{2}\)

    \(=\dfrac{\left(1+2+...+2018\right)-1}{2}\)

    \(=\dfrac{\dfrac{2018.2019}{2}-1}{2}=1018585\)

    Ans : A = 1018585.

  • See question detail

    Copy quên xóa nguồn à :))

    Trịnh Đức Phát

    You're a thief :)

  • See question detail

    Because the greatest common dividor of m and n is 15, we put:

     \(\left\{{}\begin{matrix}m=15k\\n=15h\end{matrix}\right.\)\(\left(GCD\left(k;h\right)=1\right)\)

    \(\Rightarrow3m+2n=45k+30h=225\)

    \(\Rightarrow15\left(3k+2h\right)=225\Rightarrow3k+2h=15\)

    + If h = 0 then k = 5; and that result doesn't satisfy GCD(k;h) = 1.

    So h > 0; then k is an odd number. 

    \(3k< 15\Rightarrow k< 5\Rightarrow k\in\left\{1;3\right\}\)

    If k = 1 then h = 6\(\Rightarrow\) m = 15 ; n = 90 \(\Rightarrow mn=15.90=1350\)

    If k = 3 then h = 3; that result doesn't satisfy GCD(k;h)=1.

    Therefore, the answer is 1350.

  • See question detail

    Việt Hoàng, you shouldn't copy Sáng's answer. And Sáng, your English is not so good. May be they can't understand what you have written.

  • See question detail

    Don't worry, we don't recognize him :)

  • See question detail

    Given a sum :  2 + 4 + 6 + ... + 2k

    The number of terms is : \(\dfrac{2k-2}{2}+1=k\) ( terms )

    So, the result of this sum is : \(\dfrac{k.\left(2k+2\right)}{2}=k.\left(k+1\right)\)

    Example : 2 + 4 + 6 = 2 + 4 + 2.3 ; so k = 3; then 2 + 4 +6 = k.(k+1)=3.4 .

  • See question detail

    Dear, Nguyễn Xuân Sáng!

    Your English isn't very good, if you continue writing "Land A/B/... = Sth", everybody may not understand your answer.

    You can write " Put B = 1.2 + 2. 3 +... ". Use "put", okay :)

  • See question detail

    If p = 2 then p + 8 isn't a prime number.

    If p = 3 then p + 8 and p + 16 are prime numbers.

      \(\Rightarrow3^2+\left(3+8\right)^2+\left(3+16\right)^2=491\)

    If p > 3 then \(\left[{}\begin{matrix}p=3k+1\\p=3k+2\end{matrix}\right.\)

      + If p = 3k + 1 then p + 8 = 3k + 9=3(k+1) isn't a prime number.

      + If p = 3k + 2 then p + 16 = 3k + 18=3(k+6) isn't a prime number.

    Ans: 491.

  • See question detail

    a + b + c = 72, then there's an even number and two odd numbers.

    The only even prime number is 2, so a = 2.

    \(b+c=70=3+67=7+61=11+59=17+53=23+47=29+41\)Ans : a = 2 and \(\left(b;c\right)\in\left\{\left(3;67\right);\left(67;3\right);\left(7;61\right);\left(61;7\right);\left(11;59\right);\left(59;11\right);\left(17;53\right);\left(53;17\right);\left(23;47\right);\left(47;23\right);\left(29;41\right);\left(41;29\right)\right\}\)

  • See question detail

    \(300=2^2.3.5^2\)

    The number of integer factors 300 have is \(2.\left[\left(2+1\right)\left(1+1\right)\left(2+1\right)\right]=36\)

    Ans : 36.

  • 1
  • 2
  • 3
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM