We have:
\(\overline{a_na_{n-1}...a_3a_2a_1}=\overline{a_na_{n-1}..a_4}.1000+\overline{a_3a_2a_1}\)
Since \(1000⋮4\) => \(\overline{a_na_{n-1}..a_4}.1000\) \(⋮\) \(4\).
\(\overline{a_na_{n-1}...a_3a_2a_1}\) \(⋮\) \(4\) iff \(\overline{a_3a_2a_1}\) \(⋮\) \(4\)
In other word: a number is divisibility by 4 if only if the number formed by its three right digits is divisibility by 4.