Let \(f\left(x\right)=\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}-1\)
We have:
\(f\left(a\right)=0+1+0-1=0\)
Similarity \(f\left(b\right)=0,f\left(c\right)=0\)
\(f\left(x\right)\) is a degree of 2 and have 3 different solotutions \(\left(a,b,c\right)\)
\(\Rightarrow f\left(x\right)=0\)
\(\Rightarrow\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}=1\)