MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Carter

18/04/2017 at 15:09
Answers
4
Follow

 Simplify the expression (where a, b, and c are different real numbers) :

\(\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}\)




    List of answers
  • ...
    An Duong 21/04/2017 at 07:27

    Let \(f\left(x\right)=\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}-1\)

    We have:

      \(f\left(a\right)=0+1+0-1=0\)

    Similarity \(f\left(b\right)=0,f\left(c\right)=0\)

    f(x) is a degree of 2 and have 3 different solotutions (a, b, c) .

    => f(x) = 0

    => \(\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}=1\)

    Selected by MathYouLike
  • ...
    Sarah Marianna 01/08/2019 at 04:36

    Let f(x)=(x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)−1f(x)=(x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)−1

    We have:

      f(a)=0+1+0−1=0f(a)=0+1+0−1=0

    Similarity f(b)=0,f(c)=0f(b)=0,f(c)=0

    f(x) is a degree of 2 and have 3 different solotutions (a, b, c) .

    => f(x) = 0

    => (x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)=1

  • ...
    Sarah Marianna 01/08/2019 at 04:35

    Let f(x)=(x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)−1f(x)=(x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)−1

    We have:

      f(a)=0+1+0−1=0f(a)=0+1+0−1=0

    Similarity f(b)=0,f(c)=0f(b)=0,f(c)=0

    f(x) is a degree of 2 and have 3 different solotutions (a, b, c) .

    => f(x) = 0

    => (x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)=1                                                             Study Well !

  • ...
    Ban quản trị 16/09/2018 at 09:47

    Let \(f\left(x\right)=\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}-1\)

    We have:

    \(f\left(a\right)=0+1+0-1=0\)

    Similarity \(f\left(b\right)=0,f\left(c\right)=0\)

    \(f\left(x\right)\) is a degree of 2 and have 3 different solotutions \(\left(a,b,c\right)\)

    \(\Rightarrow f\left(x\right)=0\)

    \(\Rightarrow\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}=1\)


Post your answer

Please help Carter to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM