-
An Duong 21/04/2017 at 07:27
Let \(f\left(x\right)=\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}-1\)
We have:
\(f\left(a\right)=0+1+0-1=0\)
Similarity \(f\left(b\right)=0,f\left(c\right)=0\)
f(x) is a degree of 2 and have 3 different solotutions (a, b, c) .
=> f(x) = 0
=> \(\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}=1\)
Selected by MathYouLike -
Sarah Marianna 01/08/2019 at 04:36
Let f(x)=(x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)−1f(x)=(x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)−1
We have:
f(a)=0+1+0−1=0f(a)=0+1+0−1=0
Similarity f(b)=0,f(c)=0f(b)=0,f(c)=0
f(x) is a degree of 2 and have 3 different solotutions (a, b, c) .
=> f(x) = 0
=> (x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)=1
-
Sarah Marianna 01/08/2019 at 04:35
Let f(x)=(x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)−1f(x)=(x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)−1
We have:
f(a)=0+1+0−1=0f(a)=0+1+0−1=0
Similarity f(b)=0,f(c)=0f(b)=0,f(c)=0
f(x) is a degree of 2 and have 3 different solotutions (a, b, c) .
=> f(x) = 0
=> (x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)=1 Study Well !
-
Ban quản trị 16/09/2018 at 09:47
Let \(f\left(x\right)=\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}-1\)
We have:
\(f\left(a\right)=0+1+0-1=0\)
Similarity \(f\left(b\right)=0,f\left(c\right)=0\)
\(f\left(x\right)\) is a degree of 2 and have 3 different solotutions \(\left(a,b,c\right)\)
\(\Rightarrow f\left(x\right)=0\)
\(\Rightarrow\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}=1\)