MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 2 )
  • See question detail

    From a+b=c+d

    => (a+b)2=(c+d)2

    =>ab=cd

    Consider (a+b)3=(c+d)3

    We have a3+3ab(a+b)+b3=c3+3cd+d3

    =>a3+b3=c3+d3

    Consider (a3+b3).(a+b)=(c3+d3).(c+d)

    => a4+ab(a2+b2)+b4=c4+cd(c2+d2)

    =>a4+b4=c4+d4

    We can infer this

    an+bn=cn+dn

    => (an+bn).(a+b)=(cn+dn).(c+d)

    => an+1+ab(an-1+bn-1)+bn+1=cn+1+cd(cn-1+dn-1)+dn+1

    =>an+1+bn+1=cn+1+dn+1

    So we have a2018+b2018=c2018+d2018

  • See question detail

    Give A=x+x2+x3+..+x100

    A=1+12+13+...+1100

    A=1+1+1+...+1 ( 100 number 1)

    A=100

    So the expression x+x2+x3+...+x100 at x=1 is 100

  • View more →
Questions ( 1 )
  • Given the real numbers a,b and c such that \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{4}{a+b+c}\)

    Find the value of the expression

    \(M=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)

  • View more →
© HCEM 10.1.29.225
Crafted with by HCEM