Answers ( 2 )
-
See question detail
From a+b=c+d
=> (a+b)2=(c+d)2
=>ab=cd
Consider (a+b)3=(c+d)3
We have a3+3ab(a+b)+b3=c3+3cd+d3
=>a3+b3=c3+d3
Consider (a3+b3).(a+b)=(c3+d3).(c+d)
=> a4+ab(a2+b2)+b4=c4+cd(c2+d2)
=>a4+b4=c4+d4
We can infer this
an+bn=cn+dn
=> (an+bn).(a+b)=(cn+dn).(c+d)
=> an+1+ab(an-1+bn-1)+bn+1=cn+1+cd(cn-1+dn-1)+dn+1
=>an+1+bn+1=cn+1+dn+1
So we have a2018+b2018=c2018+d2018
-
See question detail
Give A=x+x2+x3+..+x100
A=1+12+13+...+1100
A=1+1+1+...+1 ( 100 number 1)
A=100
So the expression x+x2+x3+...+x100 at x=1 is 100