MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 4 )
  • See question detail

    We have : 

    \(55^{n+1}-55^n=55^n\cdot\left(55-1\right)=55^n\cdot54\)

    Because \(55^n\cdot54⋮54\)

    So \(55^{n+1}-55^n⋮54\)

  • See question detail

    Cause Granny has 10 grandchildren and all of them have a different ages so 

    I call the ages of ten children are \(x_1,x_2,....,x_{10}\)

    Cause Alice is the eldest 

    We have \(x_1+x_2+....+x_{10}=180\)

    => \(10x_{10}\ge180\)       

    <=>  \(x_{10}\ge18\)

    So , at least , the age of alice is 10 

  • See question detail

    Kayasari Ryuunosuke hey.....you have the same name as me :v 

  • See question detail

    nandemonai nói đúng đấy , copy mà cop cũng chẳng được nữa , điểm cao chắc do tự lập nick rồi tự chứ j , tệ hại 

  • View more →
Questions ( 8 )
  • Show that :  A is a square number \(\forall n\in N\) , know :

    \(A=1^3+2^3+...+n^3\)  

  • Give a,b > 0 . Prove that :

    a) \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

    b) \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

  • a) Find x if : |2x + 3| = x + 2

    b) Find the smallest value of A = |x - 2006| + |2007 - x| when x change 

  • Shorter the expression :

    A = |x + 0.8| - |x - 25| + 1.9 with a < -0.8 

  • Give \(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

    Calculator : M = \(\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)

  • Give \(\dfrac{bt-cn}{a}=\dfrac{cm-at}{b}=\dfrac{an-bm}{c}\) (with a,b,c \(\ne\)0) . Demonstrate : \(\dfrac{m}{a}=\dfrac{n}{b}=\dfrac{t}{c}\)

  • Find three number x,y,z know : \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\) and 5z - 3x - 4y = 50 

     

  • Give \(\Delta ABC\) have 3 acute angle , AB < AC. M is the midpoint of BC. Through MY straight lines perpendicular to the bisectrix of the corner A cuts AB at D, AC at E . 

    Demonstrate : BD = CE

     

  • View more →
© HCEM 10.1.29.240
Crafted with by HCEM