MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • Newest
  • Featured
  • Votes
  • Unanswered
  • First «
  • 366
  • 367
  • 368
  • 369
  • 370
  • » Last
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG

All questions

  • Newest
  • Featured
  • Votes
  • Unanswered

...
Carter
16/05/2017 at 08:31
Answers
0
Follow

Here we have a perfect magic square composed of the numbers I to 16 inclusive. The rows, columns, and two long diagonals all add up 34. Now, supposing you were forbidden to use the two numbers 2 and 15, but allowed, in their place, to repeat any two numbers already used, how would you construct your square so that rows, columns, and diagonals should still add up 34? Your success will depend on which two numbers you select as substitutes for the 2 and 15. 

undefined


...
Kantai Collection
19/07/2017 at 15:02
Answers
2
Follow

Give rectangle ABCD , connect C to any point E on the BD diagonal , on ray EC , choose F so that EF = EC. Draw FH and FK perpendicular to AB and AD . Prove that :

a) Quadrilateral AHFK is a rectangle 

b) AF parellel to BD and KH parellel to AC

c) Three points E,H,K are straight .

 

 

  • ...
    ღ kekio ღ 21/07/2017 at 08:30

    a, consider the triangle AHFK: \(\widehat{A}=\widehat{H}=\widehat{K}=90^o\)

    should AHFK is rectangle

    b,  consider the triangle ACF :OA=OC;EC=EF

    should OE is the average line of the triangle ACF

    should OE//AF or AF//BD

    similar: the average line is EJ triangle ACF 
    should EJ//AC

    similar: the average line is EJ triangle ACF 
    should EJ//AC

    \(\Rightarrow\widehat{AKJ}=\widehat{KAJ}+\widehat{KAJ}=\widehat{KDE}\)pairs of isotopes

    \(\Rightarrow\widehat{AKJ}=\widehat{KDE}\) or KDE loss triangle

    inferred :\(\widehat{JK}=\widehat{DEK}=\dfrac{180-KDE}{2}\) should K; J and E line 
    that K; J; H line 
    should K; H and E also in line and HK//AC

    Selected by MathYouLike
  • ...
    ღ kekio ღ 21/07/2017 at 08:06

    A B D C K F J H E O


...
Summer Clouds moderators
08/08/2017 at 08:39
Answers
2
Follow

A fair coin is flipped, and a standard die is rolled. What is the probability that the coin lands heads up and the die shows a prime number? Express your answer as a common fraction

  • ...
    Lê Quốc Trần Anh Coordinator 08/08/2017 at 09:11

    Sorry, can I fix the answer?

    The probability of the die shows a prime number from 1-6 (The numbers: 2;3;5): \(1:2=\dfrac{1}{2}\)

    So their probability are: \(\dfrac{1}{2}.\dfrac{1}{2}=\dfrac{1}{4}=25\%\)

  • ...
    Lê Quốc Trần Anh Coordinator 08/08/2017 at 08:44

    The probability that the coin lands head up is: \(1:2=\dfrac{1}{2}\)

    The probability that the die rolls as a prime number from 1-6 (The numbers are: 4): \(1:6=\dfrac{1}{6}\)

    So their probability are: \(\dfrac{1}{2}.\dfrac{1}{6}=\dfrac{1}{12}\)


...
Kaya Renger Coordinator
29/08/2017 at 14:33
Answers
4
Follow

Find the edges of polygons with the sum of angles equals to 1260

  • ...
    Phan Thanh Tinh Coordinator 29/08/2017 at 16:55

    Let n be the number of edges of the polygon \(\left(n\in N;n>2\right)\)

    We have : \(180\left(n-2\right)=1260\Leftrightarrow n-2=7\Leftrightarrow n=9\)

    So, the polygon has 9 sides.

    Selected by MathYouLike
  • ...
    Vũ Trung Dũng 21/09/2017 at 14:42

    Let n be the of edges of the polygon and (n ∈ N, n > 2)

    We have :

    180 . (n - 2) = 1260 <=> n - 2 = 7 => n = 9

    Answer: 9 sides

  • ...
    Help you solve math 29/08/2017 at 17:01

    Let n be the of edges of the polygon and (n ∈ N, n > 2)

    We have :

    180 . (n - 2) = 1260 <=> n - 2 = 7 => n = 9

    Answer: 9 sides
     


...
Summer Clouds moderators
14/09/2017 at 08:42
Answers
2
Follow

P(−3, −2) is reflected over the line y = −x and then translated 4 units right and 1 unit down. What are the coordinates of the final image of P? 

  • ...
    Phan Thanh Tinh Coordinator 14/09/2017 at 11:03

    The first reflection changes P(-3 ; -2) to (2 ; 3). The answer is :

    (2 + 4 ; 3 - 1) = (6 ; 2)

    Selected by MathYouLike
  • ...
    Math You Like 14/09/2017 at 16:14

    The first reflection changes  P(-3; -2) to (2; 3)

    The answer is: 

    (2 + 4; 3 - 1) = (6; 2)


...
Lê Quốc Trần Anh Coordinator
13/11/2017 at 17:49
Answers
1
Follow

Andie bought 3 oldies CDs and 2 current CDs for $78. Deanne bought 2 oldies CDs and 3 current CDs for $82. What is the positive difference in the price of an oldie CD and the price of a current CD?

  • ...
    Phan Thanh Tinh Coordinator 13/11/2017 at 22:35

    Let a, b be the price of an oldies CD and a current CD respectively.

    We have :

    (2a + 3b) - (3a + 2b) = 82 - 78 <=> b - a = 4

    So, the answer is 4

    Selected by MathYouLike

...
Cloud moderators
30/11/2017 at 13:48
Answers
1
Follow

The sum of eleven consecutive integers is 11. What is the least of these eleven integers?

  • ...
    Phan Thanh Tinh Coordinator 30/11/2017 at 19:25

    Let a, a + 1, a + 2, ... , a + 10 be the integers. We have :

    \(a+\left(a+1\right)+\left(a+2\right)+...+\left(a+10\right)=11\)

    \(\Leftrightarrow11a+\dfrac{10.11}{2}=11\Leftrightarrow a+\dfrac{10}{2}=1\Leftrightarrow a=-4\)

    So, the answer is -4

    Selected by MathYouLike

...
longia
31/12/2017 at 08:35
Answers
4
Follow

Compare

45777 and 35674

  • ...
    FA Liên Quân Garena 01/01/2018 at 10:16

    4 > 3 => 45777 > 35777

    And 35777 > 35674

    ==> 45777 > 35674

  • ...
    Help you solve math 31/12/2017 at 08:40

    P/s Mk chỉ biết 45777 > 35674 vì dễ thấy mà mk cũng không biết cách trả lời

  • ...
    Help you solve math 01/01/2018 at 10:58

    Bạn là người copy câu trả lời của Đào Trọng luân


...
Alone
07/04/2018 at 13:49
Answers
1
Follow

Find the maximum of expression \(Q=\dfrac{3\left(x+1\right)}{x^3+x^2+x+1}\)

  • ...
    Nguyễn Huy Thắng 24/04/2018 at 10:15

    \(Q=\dfrac{3\left(x+1\right)}{x^3+x^2+x+1}=\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}=\dfrac{3}{x^2+1}\)

    We have: \(x^2\ge0\forall x\Leftrightarrow x^2+1\ge1\forall x\)

    \(\Leftrightarrow\dfrac{1}{x^2+1}\le1\forall x\)

    \(\Leftrightarrow Q=\dfrac{3}{x^2+1}\le3\forall x\)

    \("="\Leftrightarrow x=0\)


...
Lê Quốc Trần Anh Coordinator
11/06/2018 at 02:11
Answers
0
Follow

Prove that the product of four consecutive integers is not a square number.


4801

questions

Weekly ranking

  • ...

    Trần Nhật Quỳnh

    This week's point: . Total: 0
  • ...

    haiplt

    This week's point: . Total: 6
  • ...

    at the speed of light

    This week's point: . Total: 0
  • ...

    Cô Nàng Lạnh Lùng

    This week's point: . Total: 0
  • ...

    Use Ka Ti

    This week's point: . Total: 0
  • ...

    lamber love liya

    This week's point: . Total: 0
  • ...

    Nguyễn Thị Huyền Mai

    This week's point: . Total: 0
  • ...

    Ngu Ngu Ngu

    This week's point: . Total: 24
  • ...

    phan gia huy

    This week's point: . Total: 1
  • ...

    Nguyễn Phương Ly Fan Triệu Lệ Dĩnh

    This week's point: . Total: 0

Tags

games 18  double counting 8  generating functions 2  probabilistic method 1  Polynomial 9  inequality 13  area 17  Equation 9  Primitive Roots Modulo Primes 1  Primitive in Arithmetic Progression 6  Base n Representatioons 4  Pell Equation 1  mixed number 1  Fraction 29  Circle 3  Imaginary numbers 1  Decimal number 2  Volume 2  percentages 6  simple equation 19  absolute value 19  rational numbers 20  Operation of Indices 21  Simulataneous Equation A System of Equations 25  Multiplication of Polynomial 17  divisibility 24  Maximum 5  Minimum 8  Fraction 4  Prime Numbers and Composite Numbers 13  Square Number 26  Even and Odd Numbers 13  GDC and LCM 11  GCD and LCM 12  Permutation and combination 9  combinations 5  interger 7  number 10  Diophantine equations 2  equations 1  Grade 6 19  Power 3  equality 2  maxima-minima 2  square root 1  Polygon 2  IGCSE 1  factorial 1  integers 2 
Trigonometric
sin cos tan cot sinh cosh tanh
Lim-log

Combined operations

 

α β γ δ θ σ ∂ ε ω φ ϕ π μ λ Ψ ξ η χ ζ ι κ ν ψ Ω ρ τ υ Γ Δ Λ Φ Π Σ Υ Ξ ϑ Θ ς ϰ
∞ ⊻ ⩞ ⋎ ⋏ ≀ ∪ ⊎ ⋓ ∩ ⋒ ⊔ ⊓ ⨿ ⊗ ⊙ ⊚ ⊛ ⊘ ⊝ ⊕ ⊖ ⊠ ◯ ⊥
⇔ ⇒ ⇐ → ← ↔ ↑ ↓
Operations
+ - ÷ × ≠ = ⊂ ⊃ ⊆ ⊇ ≈ ∈ ∉ ∃ ∄ ≤ ≥ ± ∓ ≠ ∅ ≃ ≅ ≡ ⋮ ⋮̸ ∀
(□) [□] {□} |□|

The type of system

m×n 1×2 1×3 1×4 1×5 1×6
2×1 2×2 2×3 2×4 2×5 2×6
3×1 3×2 3×3 3×4 3×5 3×6
4×1 4×2 4×3 4×4 4×5 4×6
5×1 5×2 5×3 5×4 5×5 5×6
6×1 6×2 6×3 6×4 6×5 6×6

Recipe:

© HCEM 10.1.29.225
Crafted with by HCEM