MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • Newest
  • Featured
  • Votes
  • Unanswered
  • First «
  • 1
  • 2
  • 3
  • 4
  • 5
  • » Last
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG

All questions

  • Newest
  • Featured
  • Votes
  • Unanswered

...
Phan Minh Anh
10/06/2017 at 16:20
Answers
17
Follow

What the mountains cut int pieces?

Ai tk mk thì mk sẽ tk lại

games

  • ...
    Phan Minh Anh 14/06/2017 at 12:58

    It Thai Son mountain.

  • ...
    Đỗ Thanh Hải 29/06/2017 at 09:51

    Núi Thái Sơn nha Bạn

  • ...
    Phan Minh Anh 10/06/2017 at 16:21

    Sorry: What the mountains cut into pieces?


...
Nguyễn Nhật Minh
02/04/2017 at 11:25
Answers
2
Follow

Prove that E = \(\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+...+\dfrac{1}{n^3}< \dfrac{1}{12}\).

Fractioninequality

  • ...
    FA KAKALOTS 28/01/2018 at 22:08

    For any natural number n > 1,we have :

    (n - 1)n(n + 1) = n(n2 - 1) = n3 - n < n3

    ⇒1n3<1(n−1)n(n+1)

    1(n−1)n(n+1)=1n.1(n−1)(n+1)

    =1n.(n+1)−(n−1)(n−1)(n+1).12=12.1n.(1n−1−1n+1)

    =12.(1(n−1)n−1n(n+1))

    Now we have :

    E < 12.3.4+13.4.5+14.5.6+...+1(n−1)n(n+1)

    =12(12.3−13.4)+12(13.4−14.5)+12(14.5−15.6)+...+12(1(n−1)n−1n(n+1))

    =12(12.3−1n(n+1))=112−12n(n+1)<112

    Hence,E<112

  • ...
    Phan Thanh Tinh Coordinator 24/04/2017 at 13:50

    For any natural number n > 1,we have :

    (n - 1)n(n + 1) = n(n2 - 1) = n3 - n < n3

    \(\Rightarrow\dfrac{1}{n^3}< \dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)

    \(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{n}.\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

    \(=\dfrac{1}{n}.\dfrac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)\left(n+1\right)}.\dfrac{1}{2}=\dfrac{1}{2}.\dfrac{1}{n}.\left(\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)

    \(=\dfrac{1}{2}.\left(\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\right)\)

    Now we have :

    E < \(\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+\dfrac{1}{4.5.6}+...+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)

    \(=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+\dfrac{1}{2}\left(\dfrac{1}{3.4}-\dfrac{1}{4.5}\right)+\dfrac{1}{2}\left(\dfrac{1}{4.5}-\dfrac{1}{5.6}\right)+...+\dfrac{1}{2}\left(\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\right)\)

    \(=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{n\left(n+1\right)}\right)=\dfrac{1}{12}-\dfrac{1}{2n\left(n+1\right)}< \dfrac{1}{12}\)

    Hence,\(E< \dfrac{1}{12}\)


...
HỦY DIỆT THE WORLD
08/01/2018 at 20:57
Answers
1
Follow

Shorten the following expression :

\(\dfrac{x^3+x^2-x-1}{x^2-6x+5}\)

  • ...
    FA Liên Quân Garena 08/01/2018 at 21:09

    We have :

    \(=\dfrac{\left(x^3+x^2\right)-\left(x+1\right)}{x^2-5x-x+5}\)

    \(=\dfrac{x^2\left(x+1\right)-\left(x+1\right)}{x\left(x-1\right)-5\left(x-1\right)}\)

    \(=\dfrac{\left(x-1\right)\left(x+1\right)^2}{\left(x-5\right)\left(x-1\right)}\)

    \(=\dfrac{\left(x+1\right)^2}{x-5}\)
     

    HỦY DIỆT THE WORLD selected this answer.

...
Nguyen Tuan Anh
14/03/2017 at 14:16
Answers
4
Follow

Find all triangles whose sides are consecutive integer and areas are alse integers.

Pell Equation

  • ...
    Thao Dola 14/03/2017 at 14:23

    The first such triple is 8 = \(2^2+2^2\),9 = \(3^3+0^2\),10=\(3^2+1^2\), which suggests we consider triples \(x^2-1,x^2,x^2+1\).Since \(x^2-2y^2=1\) has infinitely many positive solutions (x,y), we see that \(x^2-1=y^2+y^2,x^2=x^2+0^2\)and \(x^2+1\) satisfy the requiment and there are infinitely many such triples.

    Selected by MathYouLike
  • ...
    FA KAKALOTS 28/01/2018 at 22:12

    The first such triple is 8 = 22+22,9 = 33+02,10=32+12, which suggests we consider triples x2−1,x2,x2+1.Since x2−2y2=1 has infinitely many positive solutions (x,y), we see that x2−1=y2+y2,x2=x2+02and x2+1 satisfy the requiment and there are infinitely many such triples.

  • ...
    Such doge 14/03/2017 at 21:03

    Wowe it hard


...
FA Liên Quân Garena
30/12/2017 at 21:41
Answers
1
Follow

 a , Given two real numbers x , y satisfy :

\(x^2-2y^2=xy\) ( x + y other than 0 and y other than 0 )

Calculate the value of the expression :

\(P=\dfrac{x-y}{x+y}\)

b , Find the integer (x , y) pair satisfying :

\(x^2+xy-2016x-2017y-2018=0\)

  • ...
    Dao Trong Luan Coordinator 31/12/2017 at 10:33

    a.

    \(x^2-2y^2=xy\)

    \(\Leftrightarrow x^2-2y^2-xy=0\)

    \(\Leftrightarrow\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)

    \(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

    \(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=0\)

    \(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

    But \(x+y\ne0\)

    \(\Rightarrow x-2y=0\Leftrightarrow x=2y\)

    \(\Rightarrow P=\dfrac{x-y}{x+y}=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)


...
FA Liên Quân Garena
30/12/2017 at 21:59
Answers
4
Follow

Polynomial Analysis into Factors :

\(x^3-x^2-4x^2+8x+4\)

  • ...
    Alone 31/12/2017 at 11:19

    Continue Dao Trong Luan'answer:

    \(\left(x-1\right)\left[x^2-4\left(x-1\right)\right]\)

    \(=\left(x-1\right)\left(x^2-4x+4\right)\)

    \(=\left(x-1\right)\left(x-2\right)^2\)

    FA Liên Quân Garena selected this answer.
  • ...
    FA Liên Quân Garena 01/01/2018 at 10:26

    I edited the subject

    x3−x2−4x2+8x−4

    =x2(x−1)−(4x2−8x+4)

    =x2(x−1)−[(2x)2−2⋅2x⋅2+22]

    =x2(x−1)−(2x−2)2

    =x2(x−1)−4(x−1)2

    =(x−1)[x2−4(x−1)]

    (x−1)[x2−4(x−1)]

    =(x−1)(x2−4x+4)

    =(x−1)(x−2)2

  • ...
    Hương Yêu Dấu 31/12/2017 at 13:33

    We have :

    (x - 1) . [x2 - 4 . (x - 1)]

    <=> (x - 1) . (x2 - 4x + 4)

    => (x - 1). (x - 2)2

    This is brief


...
FA Liên Quân Garena
30/12/2017 at 22:00
Answers
1
Follow

find x :

\(\left(x+1\right)\left(x-3\right)-\left(x+5\right)\left(x-5\right)\left(x-2\right)=0\)

  • ...
    Alone 31/12/2017 at 11:07

    We have:\(\left(x+1\right)\left(x-3\right)-\left(x+5\right)\left(x-5\right)\left(x-2\right)=0\)

    \(\Leftrightarrow x^2-2x-3-\left(x^2-25\right)\left(x-2\right)=0\)

    \(\Leftrightarrow x^2-2x-3-x^3+2x^2+25x-50=0\)

    \(\Leftrightarrow3x^2-x^3+23x-53=0\)

    \(\Leftrightarrow x^2\left(3-x\right)-23\left(3-x\right)+16=0\)

    \(\Leftrightarrow\left(x^2-23\right)\left(3-x\right)+16=0\)

    \(\Rightarrow x^2-23\in\left\{-16,-8,-4,-2,-1,1,2,4,8,16\right\}\)

    \(\Rightarrow x^2\in\left\{7,15,19,21,22,24,25,27,31,39\right\}\)

    Because 3-x is a integer number so x is a integer number so \(x^2=25\) and 3-x=-8

    \(\Rightarrow\) x=\(\pm\)5 and x=11 (unsatisfactory)

    So not have x satisfy

    FA Liên Quân Garena selected this answer.

...
FA Liên Quân Garena
30/12/2017 at 22:03
Answers
1
Follow

Simplified :

\(x^2-1-\dfrac{x^4-3x^2-4}{x^2+1}\)

  • ...
    Lightning Farron 30/12/2017 at 23:44

    Stop Touching YourSelf, please =((


...
Nguyễn Thị Huyền Mai
13/04/2017 at 22:42
Answers
1
Follow

Solve the system of equations: 

\(\left\{{}\begin{matrix}17x+2y=2011\left|xy\right|\\x-2y=3xy\end{matrix}\right.\)

 

  • ...
    Ngu Ngu Ngu 13/04/2017 at 22:55

    Put the equation above is \(\left(1\right)\)

    If \(xy>0\) then:

    \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{17}{y}+\dfrac{2}{x}=2011\\\dfrac{1}{y}-\dfrac{2}{x}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1007}{9}\\\dfrac{1}{x}=\dfrac{490}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{9}{490}\\y=\dfrac{9}{1007}\end{matrix}\right.\) (satisfy)

    If  \(xy< 0\) then:

    \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{17}{y}+\dfrac{2}{x}=-2011\\\dfrac{1}{y}-\dfrac{2}{x}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=-\dfrac{1004}{9}\\\dfrac{1}{x}=-\dfrac{1031}{18}\end{matrix}\right.\)\(\Rightarrow xy>0\)  (unsatisfactory)

    If \(xy=0\) then: \(\left(1\right)\Leftrightarrow x=y=0\) (satisfy)

    Conclude: equations have 2 solutions: \(\left(0;0\right)\) and \(\left(\dfrac{9}{490};\dfrac{9}{1007}\right)\)

    Nguyễn Thị Huyền Mai selected this answer.

...
Use Ka Ti
14/04/2017 at 08:02
Answers
1
Follow

Solve the equation:

\(2\left(x^2+\dfrac{1}{x^2}\right)+3\left(x+\dfrac{1}{x}\right)-16=0\)

 

  • ...
    Ngu Ngu Ngu 14/04/2017 at 08:08

    \(2\left(x^2+\dfrac{1}{x^2}\right)+3\left(x+\dfrac{1}{x}\right)-16=0\left(1\right)\)

    Condition: \(x\ne0\)

    Put \(t=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=t^2-2\)

    \(\left(1\right)\Leftrightarrow2t^2+3t-20=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=-4\\t=\dfrac{5}{2}\end{matrix}\right.\)

    If \(t=-4\Rightarrow x=-2\pm\sqrt{3}\)

    If \(t=\dfrac{5}{2}\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)

    Conclude:...

    Use Ka Ti selected this answer.

4801

questions

Weekly ranking


Tags

games 18  double counting 8  generating functions 2  probabilistic method 1  Polynomial 9  inequality 13  area 17  Equation 9  Primitive Roots Modulo Primes 1  Primitive in Arithmetic Progression 6  Base n Representatioons 4  Pell Equation 1  mixed number 1  Fraction 29  Circle 3  Imaginary numbers 1  Decimal number 2  Volume 2  percentages 6  simple equation 19  absolute value 19  rational numbers 20  Operation of Indices 21  Simulataneous Equation A System of Equations 25  Multiplication of Polynomial 17  divisibility 24  Maximum 5  Minimum 8  Fraction 4  Prime Numbers and Composite Numbers 13  Square Number 26  Even and Odd Numbers 13  GDC and LCM 11  GCD and LCM 12  Permutation and combination 9  combinations 5  interger 7  number 10  Diophantine equations 2  equations 1  Grade 6 19  Power 3  equality 2  maxima-minima 2  square root 1  Polygon 2  IGCSE 1  factorial 1  integers 2 
Trigonometric
sin cos tan cot sinh cosh tanh
Lim-log

Combined operations

 

α β γ δ θ σ ∂ ε ω φ ϕ π μ λ Ψ ξ η χ ζ ι κ ν ψ Ω ρ τ υ Γ Δ Λ Φ Π Σ Υ Ξ ϑ Θ ς ϰ
∞ ⊻ ⩞ ⋎ ⋏ ≀ ∪ ⊎ ⋓ ∩ ⋒ ⊔ ⊓ ⨿ ⊗ ⊙ ⊚ ⊛ ⊘ ⊝ ⊕ ⊖ ⊠ ◯ ⊥
⇔ ⇒ ⇐ → ← ↔ ↑ ↓
Operations
+ - ÷ × ≠ = ⊂ ⊃ ⊆ ⊇ ≈ ∈ ∉ ∃ ∄ ≤ ≥ ± ∓ ≠ ∅ ≃ ≅ ≡ ⋮ ⋮̸ ∀
(□) [□] {□} |□|

The type of system

m×n 1×2 1×3 1×4 1×5 1×6
2×1 2×2 2×3 2×4 2×5 2×6
3×1 3×2 3×3 3×4 3×5 3×6
4×1 4×2 4×3 4×4 4×5 4×6
5×1 5×2 5×3 5×4 5×5 5×6
6×1 6×2 6×3 6×4 6×5 6×6

Recipe:

© HCEM 10.1.29.225
Crafted with by HCEM