Give x4+y4+z4=3.Find the minium value of P=x2(x+y)+y2(y+z)+z2(z+x)
Solve the equation:\(x^2+\left(\dfrac{x}{x+1}\right)^2=1\)
Givea>b>c>0 and a2+b2+c2=1.Prove that:\(\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}\ge\dfrac{1}{2}\)
Give a,b,c>0.Prove that:\(\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}\ge\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Solve the equation:
2011x=x2011
Find the number of roots of the following equation
(x-2017)(x2-20182)(x3-20193)(x4-20204)=0
Let P=|x2-5|+|x2-6|+|x2-2017|.What is the value of x so that P attains its minimum value?
Let x be an integer.Find the maximum value of the expression M=\(\dfrac{2017}{2x^2-2x+1}\)
Find the next number to fill in dots:
1,3,7,15,31,.............
How many numbers between 138 and 752?