Find x,y,z are integer for x3+y3+z3=x+y+z+2011
Let the row 1,3,6,10,15,21,.........Find the 2016th of row?
Find the minimum of M=\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
Let a,b,c are three edges of a triangle.Prove that:\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)
Let M=\(\dfrac{2.1+1}{\left(1^2+1\right)^2}+\dfrac{2.2+1}{\left(2^2+2\right)^2}+.......+\dfrac{2.2015+1}{\left(2015^2+2015\right)^2}\).Prove that:M<1
Find a,b,c are integer for \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=210\).Find the value of A=\(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\)
Let a,b for \(a+\dfrac{1}{b}\le1\).Find the minimum of S=\(\dfrac{a}{b}+\dfrac{b}{a}\)
Solve the equation :\(\dfrac{x+5}{3}-\dfrac{x-3}{5}=\dfrac{5}{x-3}-\dfrac{3}{x+5}\)
Prove that :If \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) and a+b+c=abc so we have \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=7\)
Find x,y>0 for x+y=2.Prove that:x2012+y2012\(\le\)x2013+y2013
Find a,b,c are positive numbers and a+b+c=\(\dfrac{2a}{b+c}+\dfrac{2b}{a+c}+\dfrac{2c}{a+b}\).Find the value of A=\(a^{2012}+b^{2012}+c^{2012}\)
Let ab.The total of ab and that number is drawn opposite is 100.Finh ab
I see many user(eg:Help you solve math , FA Liên Quân Garena) always A4 and self tick.I wish Admin has a solution for this.Thanks
Solve the equation 2x2(x-3)=3x(x+2)-5
Find the 8th number of row 1;2;5;10;17;..........
Find m for two equations x-1=0 is equivalent to (x-1)(mx+2)=0
Solve the equation:\(\dfrac{x+b}{x-5}+\dfrac{x+5}{x-b}=2\)
With a,b>0 satisfy a+b=2.Find the minimum of A=\(\left(1-\dfrac{4}{a^2}\right)\left(1-\dfrac{4}{b^2}\right)\)
P/s:The exam of the excellent teacher of Duc Tho district
With n is a positive number and \(a_n=\left(-1\right)^n.\dfrac{n^2+n+1}{n!}\).Find the value of S=\(a_1+a_2+........+a_{2017}\)
Find the minimum of expression P=\(\dfrac{\left(a^3+b^3\right)-\left(a^2+b^2\right)}{\left(a-1\right)\left(b-1\right)}\) with a>1 and b>1