MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 1079 )
  • See question detail

    \(x+2< \dfrac{5}{x-2}\Leftrightarrow x+2-\dfrac{5}{x-2}< 0\Leftrightarrow\dfrac{x^2-9}{x-2}< 0\)

    Case 1 : \(\left\{{}\begin{matrix}x^2-9< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2< 9\\x>2\end{matrix}\right.\)\(\Rightarrow2< x< 3\)

    Case 2 : \(\left\{{}\begin{matrix}x^2-9>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2>9\\x< 2\end{matrix}\right.\)\(\Rightarrow-10\le x< -3\)

    The answer is : \(\dfrac{\left[3-2+\left(-3\right)-\left(-10\right)\right].100}{10-\left(-10\right)}\%=40\%\)

  • See question detail

    3 mi = 190080 in

    The answer is : \(190080:2327\pi\approx26\) (in)

  • See question detail

    LCM(1,2,3,4,5,6) = 60

    So, they eat together every 60th day

    From 15/1 to 31/12, there are : 365 - 14 = 351 (days) or 366 - 14 = 352 (days)

    The answer is : (301 - 61) : 60 + 1 = 5 (times)

  • See question detail

    1200 ml is : \(80\%\times\left(100\%-25\%\right)=60\%\) of the kettle

    The answer is : \(1200:60\%=2000\) (ml)

  • See question detail

    The area of the circle is : \(6^2\pi=36\pi\) (in2)

    The length of the side of the square is : \(6.\dfrac{2}{\sqrt{2}}=6\sqrt{2}\) (in)

    The area of the square is : \(\left(6\sqrt{2}\right)^2=72\) (in2)

    The answer is : \(36\pi-72\approx41\) (in2)

  • See question detail

    The number of customers who will receive a bag is :

    (1950 - 150) : 150 + 1 = 13

    The answer is : \(\dfrac{13.100}{2000}\%=0,65\%\)

  • See question detail

    Let a, b be the price of a shirt and a pair of socks respectively

    \(\left\{{}\begin{matrix}2a+b=15\\a+2b=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a+b=15\\2a+4b=24\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{15-b}{2}\\3b=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=6\\b=3\end{matrix}\right.\)

    \(\Rightarrow15a+10b=15.6+10.3=120\)

    So, the answer is 120

  • See question detail

    Draw \(RH\perp SJ;TI\perp SJ;PM\perp ST;PN\perp RT\). We have :

    \(\dfrac{S_{RPS}}{S_{SPK}}=\dfrac{S_{RPS}:S_{SPT}}{S_{SPK}:S_{SPT}}=\dfrac{\dfrac{SP.RH:2}{SP.TI:2}}{\dfrac{SK.PM:2}{ST.PM:2}}=\dfrac{\dfrac{RH}{TI}}{\dfrac{SK}{ST}}\)

    \(=\dfrac{\dfrac{2S_{RPJ}:PJ}{2S_{PJT}:PJ}}{\dfrac{1}{3}}=\dfrac{PN.RJ:PJ}{PN.JT:PJ}.3=\dfrac{RJ}{JT}.3=2.3=6\)

    \(\Rightarrow S_{RPS}=7.6=42\left(units^2\right)\)

  • See question detail

    The speed of the hour hand is : \(\dfrac{360}{12}:60=0,5\) (0/m)

    The speed of the minute hand is : \(360:60=6\) (0/m)

    Two hands are perpendicular again when the minute hand goes further than the hour hand by : 90o x 2 = 1800 or after : \(180:\left(6-0,5\right)=32\dfrac{8}{11}\)(minutes)

    Then, the hands are perpendicular after : 

  • See question detail

    The number of balls that are replaced with green balls is :

    (100 - 4) : 4 + 1 = 25

    The number of balls that are replaced with white balls is :

    (96 - 1) : 5 + 1 = 20

    The number of balls that are replaced with yellow balls is :

    (96 - 6) : 6 + 1 = 16

    The number of green balls that are replaced with yellow balls is :

    (96 - 12) : 12 + 1 = 8

    The number of green balls that are replaced with white balls is :

    (96 - 16) : 20 + 1 = 5

    The number of white balls that are replaced with yellow balls is :

    (96 - 6) : 30 + 1 = 4

    The number of balls that are replaced three times is :

    (96 - 36) : 60 + 1 = 2

    The number of balls that are replaced at least once is :

    5 + 2 + 8 + 4 + (25 - 5 - 2 - 8) + (20 - 5 - 2 - 4) + (16 - 8 - 2 - 4)

    = 40

    The answer is : 100 - 40 = 60 (balls)

  • See question detail

    Let a be the length of the side of the small square, then the diagonal of the small square or the diameter of the circle or the length of the side of the large square is \(\sqrt{2}a\). The answer is : \(\dfrac{a^2}{\left(\sqrt{2}a\right)^2}=\dfrac{1}{2}\)

  • See question detail

    \(\overline{ab3}⋮3\Rightarrow a+b+3⋮3\Rightarrow a+b⋮3\Rightarrow\overline{ab}⋮3\)

    There are : (99 - 12) : 3 + 1 = 30 (choices) to choose \(\overline{ab}\)

    The answer is : \(\dfrac{30}{999-100+1}=\dfrac{1}{30}\)

  • See question detail

    The surface area of the cube is : 502 x 6 = 15000 (inches2)

    The volume of the cube is : 503 = 125000 (inches3)

    The answer is : 125000 - 15000 = 110000 

  • See question detail

    Let l, w be the length and the width of the rectangle respectively in inches \(\left(l\ge w>0\right)\)

    \(l=\dfrac{3}{8}.2\left(l+w\right)\Leftrightarrow l=\dfrac{3}{4}l+\dfrac{3}{4}w\Leftrightarrow\dfrac{3}{4}w=\dfrac{1}{4}l\Leftrightarrow l=3w\)

    \(lw=18.75\Leftrightarrow l.\dfrac{1}{3}l=18.75\Leftrightarrow l^2=56.25\Leftrightarrow l=7.5\)

    So, the answer is 7.5 inches

  • See question detail

    Condition : \(x\ne3;-5\)

    \(\dfrac{x+5}{3}-\dfrac{x-3}{5}=\dfrac{5}{x-3}-\dfrac{3}{x+5}\)

    \(\Leftrightarrow\dfrac{5\left(x+5\right)-3\left(x-3\right)}{15}=\dfrac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)

    \(\Leftrightarrow\left(2x+34\right)\left(\dfrac{1}{15}-\dfrac{1}{\left(x-3\right)\left(x+5\right)}\right)=0\)

    \(\Leftrightarrow\left(x+17\right).\dfrac{\left(x-3\right)\left(x+5\right)-15}{15\left(x-3\right)\left(x+5\right)}=0\)

    \(\Leftrightarrow\left(x+17\right)\left(x^2+2x-30\right)=0\)

    \(\Rightarrow\left[{}\begin{matrix}x+17=0\\x^2+2x-30=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=-1\pm\sqrt{31}\end{matrix}\right.\)(satisfied)

    So, \(S=\left\{-17;-1\pm\sqrt{31}\right\}\)

  • See question detail

    \(\dfrac{x^2}{2}+\dfrac{y^2}{3}+\dfrac{z^2}{4}=\dfrac{x^2+y^2+z^2}{5}\Leftrightarrow\left(\dfrac{x^2}{2}-\dfrac{x^2}{5}\right)+\left(\dfrac{y^2}{3}-\dfrac{y^2}{5}\right)+\left(\dfrac{z^2}{4}-\dfrac{z^2}{5}\right)=0\)\(\Leftrightarrow\dfrac{3}{10}x^2+\dfrac{2}{15}y^2+\dfrac{1}{20}z^2=0\)

    \(\dfrac{3}{10}x^2,\dfrac{2}{15}y^2,\dfrac{1}{20}z^2\ge0\Rightarrow\dfrac{3}{10}x^2+\dfrac{2}{15}y^2+\dfrac{1}{20}z^2\ge0\)

    The equality happens only when x = y = z = 0

    So, x = y = z = 0

  • See question detail

    \(2x^2\left(x-3\right)=3x\left(x+2\right)-5\)

    \(\Leftrightarrow2x^3-6x^2-\left(3x^2+6x\right)+5=0\)

    \(\Leftrightarrow2x^3-9x^2-6x+5=0\)

    \(\Leftrightarrow2x^3+2x^2-11x^2-11x+5x+5=0\)

    \(\Leftrightarrow2x^2\left(x+1\right)-11x\left(x+1\right)+5\left(x+1\right)=0\)

    \(\Leftrightarrow\left(2x^2-11x+5\right)\left(x+1\right)=0\)

    \(\Leftrightarrow\left(2x^2-10x-x+5\right)\left(x+1\right)=0\)

    \(\Leftrightarrow\left[2x\left(x-5\right)-\left(x-5\right)\right]\left(x+1\right)=0\)

    \(\Leftrightarrow\left(2x-1\right)\left(x-5\right)\left(x+1\right)=0\)

    \(\Rightarrow\left[{}\begin{matrix}2x-1=0\\x-5=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=5\\x=-1\end{matrix}\right.\)

    So, \(S=\left\{\dfrac{1}{2};5;-1\right\}\)

  • See question detail

    The area of the square is : 9 x 9 = 81 (cm2)

  • See question detail

    a) x = 100 - 33 = 67

    b) x = 100 - 88 = 12

    c) x = 100 - 22 = 78

    d) x = 100 - 18 = 82

  • See question detail

    The volume of the cube is : 2 x 2 x 2 = 8 (cm3)

  • First
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM