-
See question detail
\(x+2< \dfrac{5}{x-2}\Leftrightarrow x+2-\dfrac{5}{x-2}< 0\Leftrightarrow\dfrac{x^2-9}{x-2}< 0\)
Case 1 : \(\left\{{}\begin{matrix}x^2-9< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2< 9\\x>2\end{matrix}\right.\)\(\Rightarrow2< x< 3\)
Case 2 : \(\left\{{}\begin{matrix}x^2-9>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2>9\\x< 2\end{matrix}\right.\)\(\Rightarrow-10\le x< -3\)
The answer is : \(\dfrac{\left[3-2+\left(-3\right)-\left(-10\right)\right].100}{10-\left(-10\right)}\%=40\%\)
-
See question detail
3 mi = 190080 in
The answer is : \(190080:2327\pi\approx26\) (in)
-
See question detail
LCM(1,2,3,4,5,6) = 60
So, they eat together every 60th day
From 15/1 to 31/12, there are : 365 - 14 = 351 (days) or 366 - 14 = 352 (days)
The answer is : (301 - 61) : 60 + 1 = 5 (times)
-
See question detail
1200 ml is : \(80\%\times\left(100\%-25\%\right)=60\%\) of the kettle
The answer is : \(1200:60\%=2000\) (ml)
-
See question detail
The area of the circle is : \(6^2\pi=36\pi\) (in2)
The length of the side of the square is : \(6.\dfrac{2}{\sqrt{2}}=6\sqrt{2}\) (in)
The area of the square is : \(\left(6\sqrt{2}\right)^2=72\) (in2)
The answer is : \(36\pi-72\approx41\) (in2)
-
See question detail
The number of customers who will receive a bag is :
(1950 - 150) : 150 + 1 = 13
The answer is : \(\dfrac{13.100}{2000}\%=0,65\%\)
-
See question detail
Let a, b be the price of a shirt and a pair of socks respectively
\(\left\{{}\begin{matrix}2a+b=15\\a+2b=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a+b=15\\2a+4b=24\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{15-b}{2}\\3b=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=6\\b=3\end{matrix}\right.\)
\(\Rightarrow15a+10b=15.6+10.3=120\)
So, the answer is 120
-
See question detail
Draw \(RH\perp SJ;TI\perp SJ;PM\perp ST;PN\perp RT\). We have :
\(\dfrac{S_{RPS}}{S_{SPK}}=\dfrac{S_{RPS}:S_{SPT}}{S_{SPK}:S_{SPT}}=\dfrac{\dfrac{SP.RH:2}{SP.TI:2}}{\dfrac{SK.PM:2}{ST.PM:2}}=\dfrac{\dfrac{RH}{TI}}{\dfrac{SK}{ST}}\)
\(=\dfrac{\dfrac{2S_{RPJ}:PJ}{2S_{PJT}:PJ}}{\dfrac{1}{3}}=\dfrac{PN.RJ:PJ}{PN.JT:PJ}.3=\dfrac{RJ}{JT}.3=2.3=6\)
\(\Rightarrow S_{RPS}=7.6=42\left(units^2\right)\)
-
See question detail
The speed of the hour hand is : \(\dfrac{360}{12}:60=0,5\) (0/m)
The speed of the minute hand is : \(360:60=6\) (0/m)
Two hands are perpendicular again when the minute hand goes further than the hour hand by : 90o x 2 = 1800 or after : \(180:\left(6-0,5\right)=32\dfrac{8}{11}\)(minutes)
Then, the hands are perpendicular after :
-
See question detail
The number of balls that are replaced with green balls is :
(100 - 4) : 4 + 1 = 25
The number of balls that are replaced with white balls is :
(96 - 1) : 5 + 1 = 20
The number of balls that are replaced with yellow balls is :
(96 - 6) : 6 + 1 = 16
The number of green balls that are replaced with yellow balls is :
(96 - 12) : 12 + 1 = 8
The number of green balls that are replaced with white balls is :
(96 - 16) : 20 + 1 = 5
The number of white balls that are replaced with yellow balls is :
(96 - 6) : 30 + 1 = 4
The number of balls that are replaced three times is :
(96 - 36) : 60 + 1 = 2
The number of balls that are replaced at least once is :
5 + 2 + 8 + 4 + (25 - 5 - 2 - 8) + (20 - 5 - 2 - 4) + (16 - 8 - 2 - 4)
= 40
The answer is : 100 - 40 = 60 (balls)
-
See question detail
Let a be the length of the side of the small square, then the diagonal of the small square or the diameter of the circle or the length of the side of the large square is \(\sqrt{2}a\). The answer is : \(\dfrac{a^2}{\left(\sqrt{2}a\right)^2}=\dfrac{1}{2}\)
-
See question detail
\(\overline{ab3}⋮3\Rightarrow a+b+3⋮3\Rightarrow a+b⋮3\Rightarrow\overline{ab}⋮3\)
There are : (99 - 12) : 3 + 1 = 30 (choices) to choose \(\overline{ab}\)
The answer is : \(\dfrac{30}{999-100+1}=\dfrac{1}{30}\)
-
See question detail
The surface area of the cube is : 502 x 6 = 15000 (inches2)
The volume of the cube is : 503 = 125000 (inches3)
The answer is : 125000 - 15000 = 110000
-
See question detail
Let l, w be the length and the width of the rectangle respectively in inches \(\left(l\ge w>0\right)\)
\(l=\dfrac{3}{8}.2\left(l+w\right)\Leftrightarrow l=\dfrac{3}{4}l+\dfrac{3}{4}w\Leftrightarrow\dfrac{3}{4}w=\dfrac{1}{4}l\Leftrightarrow l=3w\)
\(lw=18.75\Leftrightarrow l.\dfrac{1}{3}l=18.75\Leftrightarrow l^2=56.25\Leftrightarrow l=7.5\)
So, the answer is 7.5 inches
-
See question detail
Condition : \(x\ne3;-5\)
\(\dfrac{x+5}{3}-\dfrac{x-3}{5}=\dfrac{5}{x-3}-\dfrac{3}{x+5}\)
\(\Leftrightarrow\dfrac{5\left(x+5\right)-3\left(x-3\right)}{15}=\dfrac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Leftrightarrow\left(2x+34\right)\left(\dfrac{1}{15}-\dfrac{1}{\left(x-3\right)\left(x+5\right)}\right)=0\)
\(\Leftrightarrow\left(x+17\right).\dfrac{\left(x-3\right)\left(x+5\right)-15}{15\left(x-3\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\left(x+17\right)\left(x^2+2x-30\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+17=0\\x^2+2x-30=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=-1\pm\sqrt{31}\end{matrix}\right.\)(satisfied)
So, \(S=\left\{-17;-1\pm\sqrt{31}\right\}\)
-
See question detail
\(\dfrac{x^2}{2}+\dfrac{y^2}{3}+\dfrac{z^2}{4}=\dfrac{x^2+y^2+z^2}{5}\Leftrightarrow\left(\dfrac{x^2}{2}-\dfrac{x^2}{5}\right)+\left(\dfrac{y^2}{3}-\dfrac{y^2}{5}\right)+\left(\dfrac{z^2}{4}-\dfrac{z^2}{5}\right)=0\)\(\Leftrightarrow\dfrac{3}{10}x^2+\dfrac{2}{15}y^2+\dfrac{1}{20}z^2=0\)
\(\dfrac{3}{10}x^2,\dfrac{2}{15}y^2,\dfrac{1}{20}z^2\ge0\Rightarrow\dfrac{3}{10}x^2+\dfrac{2}{15}y^2+\dfrac{1}{20}z^2\ge0\)
The equality happens only when x = y = z = 0
So, x = y = z = 0
-
See question detail
\(2x^2\left(x-3\right)=3x\left(x+2\right)-5\)
\(\Leftrightarrow2x^3-6x^2-\left(3x^2+6x\right)+5=0\)
\(\Leftrightarrow2x^3-9x^2-6x+5=0\)
\(\Leftrightarrow2x^3+2x^2-11x^2-11x+5x+5=0\)
\(\Leftrightarrow2x^2\left(x+1\right)-11x\left(x+1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-11x+5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-10x-x+5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[2x\left(x-5\right)-\left(x-5\right)\right]\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-5\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\x-5=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=5\\x=-1\end{matrix}\right.\)
So, \(S=\left\{\dfrac{1}{2};5;-1\right\}\)
-
See question detail
The area of the square is : 9 x 9 = 81 (cm2)
-
See question detail
a) x = 100 - 33 = 67
b) x = 100 - 88 = 12
c) x = 100 - 22 = 78
d) x = 100 - 18 = 82
-
See question detail
The volume of the cube is : 2 x 2 x 2 = 8 (cm3)