MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 1079 )
  • See question detail

    Let A = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

    => 2A = (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

               = (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

               = (34 - 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

               = (38 - 1)(38 + 1)(316 + 1)(332 + 1)

               = (316 - 1)(316 + 1)(332 + 1)

               = (332 - 1)(332 + 1)

               = 364 - 1

    \(\Rightarrow A=\dfrac{3^{64}-1}{2}\)

  • See question detail

    (a) 5m.252m = 1252m - 1

    => 5m.54m = (53)2m - 1

    => 55m = 56m - 3

    => 5m = 6m - 3

    => m = 3

    (b) 5m.25m.125m.625m = 530

    => (5.25.125.625)m = 530

    => (5.52.53.54)m = 530

    => 510m = 530

    => 10m = 30

    => m = 3

  • See question detail

    We have : (2x2 + 1)(5x + 2) = 10x3 + 4x2 + 5x + 2

    So a = 4

  • See question detail

    \(\left\{{}\begin{matrix}3x+y=9\\5x-4y=32\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=9-3x\\5x-4\left(9-3x\right)=32\end{matrix}\right.\)

    \(\Rightarrow\left\{{}\begin{matrix}y=9-3x\\17x-36=32\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=4\end{matrix}\right.\)

  • See question detail

    Replace x = 5 and y = 4 into the given equations,we have :

    \(\left\{{}\begin{matrix}5k-4m=7\\5m+4k=22\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}20k-16m=28\\20k+25m=110\end{matrix}\right.\)

    \(\Rightarrow\left\{{}\begin{matrix}41m=82\\k=\dfrac{4m+7}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=2\\k=3\end{matrix}\right.\)

  • See question detail

    \(\left\{{}\begin{matrix}3x+4y=5\\4x-2y=14\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+4y=5\\4y-8x=-28\end{matrix}\right.\)

    \(\Rightarrow\left\{{}\begin{matrix}11x=33\\y=\dfrac{5-3x}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

  • See question detail

    \(\left\{{}\begin{matrix}2x+3y=5\\y-3x=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x+3\left(3x+9\right)=5\\y=3x+9\end{matrix}\right.\)

    \(\Rightarrow\left\{{}\begin{matrix}11x+27=5\\y=3x+9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)

    => 5(2x + y) + 2(3y - 3x) + x + y = 5.(-1) + 2.15 - 2 + 3 = 26

  • See question detail

    \(\left\{{}\begin{matrix}3x+2y=12\\3x-y=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(3x+2y\right)-\left(3x-y\right)=12-3\\3x=y+3\end{matrix}\right.\)

    \(\Rightarrow\left\{{}\begin{matrix}3y=9\\x=\dfrac{y}{3}+1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=3\\x=2\end{matrix}\right.\)

    => 4x - 8y = -16 => 2a = 16 => a = 8

  • See question detail

    \(a+b⋮7\Rightarrow2a+2b⋮7\)but\(3a-b⋮7\)

    So we have :\(\left(2a+2b\right)+\left(3a-b\right)⋮7\)or\(5a+b⋮7\)

  • See question detail

    \(3a+5b⋮13\Rightarrow2\left(3a+5b\right)⋮13\)or\(6a+10b⋮13\)

    We have :\(13a+13b⋮13\Rightarrow\left(13a+13b\right)-\left(6a+10b\right)⋮13\)

    \(\Rightarrow7a+3b⋮13\)

  • See question detail

    We have : 882 = 2 x 32 x 72 ; 1134 = 2 x 34 x 7.So :

    GCD(882 ; 1134) = 2 x 32 x 7 = 126

    LCM(882 ; 1134) = 2 x 34 x 72 = 7938

  • See question detail

    Let n be the smallest value of that number. When n is divided by 2,3,4,5,6,the remainder is always 1,so n - 1 is divisible by 2,3,4,5,6

    => n - 1 = LCM(2,3,4,5,6) = 60 => n = 61

  • See question detail

    We have : 3 - 2 = 4 - 3 = 5 - 4 = 6 - 5 = 1

    So n + 1 is divisible by 3,4,5,6 but we need to find the smallest value of n.

    => n + 1 = LCM(3,4,5,6) = 60 => n = 59

  • See question detail

    (m ; n) = (2 ; 7)

  • First
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
© HCEM 10.1.29.225
Crafted with by HCEM