-
See question detail
Let A = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
=> 2A = (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
= (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
= (34 - 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
= (38 - 1)(38 + 1)(316 + 1)(332 + 1)
= (316 - 1)(316 + 1)(332 + 1)
= (332 - 1)(332 + 1)
= 364 - 1
\(\Rightarrow A=\dfrac{3^{64}-1}{2}\)
-
See question detail
(a) 5m.252m = 1252m - 1
=> 5m.54m = (53)2m - 1
=> 55m = 56m - 3
=> 5m = 6m - 3
=> m = 3
(b) 5m.25m.125m.625m = 530
=> (5.25.125.625)m = 530
=> (5.52.53.54)m = 530
=> 510m = 530
=> 10m = 30
=> m = 3
-
See question detail
We have : (2x2 + 1)(5x + 2) = 10x3 + 4x2 + 5x + 2
So a = 4
-
See question detail
\(\left\{{}\begin{matrix}3x+y=9\\5x-4y=32\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=9-3x\\5x-4\left(9-3x\right)=32\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=9-3x\\17x-36=32\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=4\end{matrix}\right.\)
-
See question detail
Replace x = 5 and y = 4 into the given equations,we have :
\(\left\{{}\begin{matrix}5k-4m=7\\5m+4k=22\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}20k-16m=28\\20k+25m=110\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}41m=82\\k=\dfrac{4m+7}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=2\\k=3\end{matrix}\right.\)
-
See question detail
\(\left\{{}\begin{matrix}3x+4y=5\\4x-2y=14\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+4y=5\\4y-8x=-28\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}11x=33\\y=\dfrac{5-3x}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
-
See question detail
\(\left\{{}\begin{matrix}2x+3y=5\\y-3x=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x+3\left(3x+9\right)=5\\y=3x+9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}11x+27=5\\y=3x+9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)
=> 5(2x + y) + 2(3y - 3x) + x + y = 5.(-1) + 2.15 - 2 + 3 = 26
-
See question detail
\(\left\{{}\begin{matrix}3x+2y=12\\3x-y=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(3x+2y\right)-\left(3x-y\right)=12-3\\3x=y+3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3y=9\\x=\dfrac{y}{3}+1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=3\\x=2\end{matrix}\right.\)
=> 4x - 8y = -16 => 2a = 16 => a = 8
-
See question detail
\(a+b⋮7\Rightarrow2a+2b⋮7\)but\(3a-b⋮7\)
So we have :\(\left(2a+2b\right)+\left(3a-b\right)⋮7\)or\(5a+b⋮7\)
-
See question detail
\(3a+5b⋮13\Rightarrow2\left(3a+5b\right)⋮13\)or\(6a+10b⋮13\)
We have :\(13a+13b⋮13\Rightarrow\left(13a+13b\right)-\left(6a+10b\right)⋮13\)
\(\Rightarrow7a+3b⋮13\)
-
See question detail
We have : 882 = 2 x 32 x 72 ; 1134 = 2 x 34 x 7.So :
GCD(882 ; 1134) = 2 x 32 x 7 = 126
LCM(882 ; 1134) = 2 x 34 x 72 = 7938
-
See question detail
Let n be the smallest value of that number. When n is divided by 2,3,4,5,6,the remainder is always 1,so n - 1 is divisible by 2,3,4,5,6
=> n - 1 = LCM(2,3,4,5,6) = 60 => n = 61
-
See question detail
We have : 3 - 2 = 4 - 3 = 5 - 4 = 6 - 5 = 1
So n + 1 is divisible by 3,4,5,6 but we need to find the smallest value of n.
=> n + 1 = LCM(3,4,5,6) = 60 => n = 59
-
See question detail
(m ; n) = (2 ; 7)