-
See question detail
\(A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(A^2=2-\sqrt{3}+2+\sqrt{3}+2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(A^2=4+2\sqrt{2^2-\sqrt{3}^2}\)
\(A^2=4+2\sqrt{4-3}=4+2=6\)
\(\Rightarrow A^2=6\Rightarrow A=\sqrt{6}\)
Select A
-
See question detail
By AM-GM we have:
\(E=\dfrac{4a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{4c}{a+b-c}\)
\(=4\left(\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{4c}{a+b-c}\right)\)
\(\ge4\cdot3\sqrt[3]{\dfrac{abc}{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)
\(\ge4\cdot3\sqrt[3]{\dfrac{abc}{abc}}=4\cdot3=12\)
Need prove \(\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)
The last inequality is right follow Schur's inequality
\("="\Leftrightarrow a=b=c\)
-
See question detail
1.By Cauchy-Schwarz we have:
\(\left(1+1\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)
Need prove \(\dfrac{\left(a^2+b^2\right)^2}{2}\ge a^2+b^2\Leftrightarrow\left(a^2+b^2\right)^2\ge2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge2\). By C-S again :
\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Leftrightarrow a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}=2\)
It's right or we are done :3
-
See question detail
??? The word "l-i-k-e" is hidden ??? . The word " l-i-k-e" are many meanings why.Why hide it just because it means "thích" ( sorry i can't Find alternative words)? It also has mean is "như là"
-
See question detail
sorry :3. it's typo :3
- mustn't use "Right mouse click" old OLM
-
See question detail
uk about idea "Need to block the copy mode in this website." - i agree but it's not perhaps mustn't use "Right mouse click" old OLM. It is very inconvenient
-
See question detail
2. By Cauchy-Schwarz we have:
\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
Similarly :\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{b+c}\right)\)
\(L.H.S\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}=R.H.S\)
-
See question detail
This web too few questions, try to answer many question ? That's impossible !!
-
See question detail
Yes but it's not mine, i need new method :)
Let \(x_1=\dfrac{a_2}{a_1};x_2=\dfrac{a_3}{a_2};...;x_n=\dfrac{a_1}{a_n}\)
We need prove \(\dfrac{a_1}{a_1+a_2+a_3}+\dfrac{a_2}{a_2+a_3+a_4}+...+\dfrac{a_n}{a_n+a_1+a_2}>1\)
It's right because \(n>3\) and \(a_i+a_{i+1}+a_{i+2}< a_1+a_2+...+a_n\forall i\)
-
See question detail
CTV ? haha u need write it by English
-
See question detail
you need write source answer Câu hỏi của Kurosaki Akatsu - Toán lớp 9 - Học toán với OnlineMath
-
See question detail
I think x=1; y=4; z=9 are solution. My idea comes from Py-ta-go theorem
-
See question detail
wrong tag : maxima-minima
-
See question detail
From \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Hence \(A=\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}=0\left(a+b+c=0\right)\)
Done !!
-
See question detail
Another way - Use Cauchy-Schwarz
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1\ge\dfrac{9}{2}\)
\(\Leftrightarrow\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}\ge\dfrac{9}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\ge\dfrac{9}{2}\)
By Cauchy-Schwarz: \(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\ge\dfrac{9}{2\left(a+b+c\right)}\)
\(\Rightarrow L.H.S=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\)
\(\ge a+b+c\cdot\dfrac{9}{2\left(a+b+c\right)}=\dfrac{9}{2}=R.H.S\)
The equality occurs for \(a=b=c\)
-
See question detail
\(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+...+100}\)
\(=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{\dfrac{100\cdot\left(100+1\right)}{2}}\)
\(=\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{100\cdot\left(100+1\right)}\)
\(=\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{100\cdot\left(100+1\right)}\)
\(=2\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{100\cdot101}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{101}\right)\)\(=2\left(\dfrac{1}{2}-\dfrac{1}{101}\right)=2\cdot\dfrac{99}{202}=\dfrac{99}{101}\)
-
See question detail
@mathlove: \(3-x\ne x-3\) ???
-
See question detail
Find minimize \(|m-2|+|m+3|\) ?
By inequality \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) we have:
\(\left|m-2\right|+\left|m+3\right|=\left|2-m\right|+\left|m+3\right|\)
\(\ge\left|2-m+m+3\right|=5\)
Done !
-
See question detail
If we let \(x = 1\) and \(o = – 1\), then note that consecutive symbols are replaced by their product. If we consider the product \(P \) of the nine values before and after each operation, we will see that the new \(P\) is the square of the old \(P\). Hence, \(P \) will always equal \(1 \) after an operation. So nine \(o\)'s yielding \(P = – 1\) can never happen.
-
See question detail
In the beginning, randomly divide the members into two groups. Let S be the sum of the number of the pairs of enemies in each group. If a member has at least two enemies in the same group, then the member has at most one enemy in the other group. Transferring the member to the other group, we will decrease S by at least one. Since S is a nonnegative integer, it cannot be decreased forever. So after finitely many transfers, each member can have at most one enemy in the same group.