-
See question detail
\(\dfrac{3-x}{100}-1=\dfrac{2-x}{101}+\dfrac{1-x}{102}\)
\(\Leftrightarrow\dfrac{3-x}{100}+1=\dfrac{2-x}{101}+1+\dfrac{1-x}{102}+1\)
\(\Leftrightarrow\dfrac{103-x}{100}-\dfrac{103-x}{101}-\dfrac{103-x}{102}=0\)
\(\Leftrightarrow\left(103-x\right)\left(\dfrac{1}{100}-\dfrac{1}{101}-\dfrac{1}{102}\right)=0\)
We have: \(\dfrac{1}{100}-\dfrac{1}{101}-\dfrac{1}{102}\ne0\)
\(\Rightarrow103-x=0\Rightarrow x=103\)
-
See question detail
There are empty seats in the train is:
\(60\cdot40\%=\dfrac{60\cdot40}{100}=24\) (seats)
Hence there are 24 empty seats in the train
-
See question detail
We have: \(ab\le\dfrac{\left(a+b\right)^2}{4}\Rightarrow\left(a+b\right)^2\ge4\Rightarrow a+b\ge2\left(a,b>0\right)\)
And \(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge ab\left(a+b\right)\ge2\)
By AM-GM's inequality we have:
\(\dfrac{a^3}{b+1}=a^3-\dfrac{a^3b}{b+1}\ge a^3-\dfrac{a^3b}{2\sqrt{b}}=a^3-\dfrac{a^3\sqrt{b}}{2}\)
Similar we have: \(\dfrac{b^3}{a+1}\ge b^3-\dfrac{b^3\sqrt{a}}{2}\)
\(\Rightarrow L.H.S\ge a^3+b^3-\dfrac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\ge2-\dfrac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\)
Need to prove: \(L.H.S\ge2-\dfrac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\ge1=R.H.S\)
Use AM-GM's inequality:\(\sqrt{b}\le\dfrac{b+1}{2}\Rightarrow a^3\sqrt{b}\le\dfrac{a^3b+a^3}{2}\)
\(\Rightarrow\dfrac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\le\dfrac{\dfrac{a^3b+a^3}{2}+\dfrac{ab^3+b^3}{2}}{2}=\dfrac{a^3b+ab^3+a^3+b^3}{4}\)
\(\Rightarrow2-\dfrac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\ge2-\dfrac{a^3b+ab^3+a^3+b^3}{4}\)
Hence \(2-\dfrac{a^3b+ab^3+a^3+b^3}{4}\ge1\Leftrightarrow\dfrac{a^3b+ab^3+a^3+b^3}{4}\ge1\)
\(\Leftrightarrow a^3b+ab^3+a^3+b^3\ge4\)\(\Leftrightarrow a^3b+ab^3\ge2\) \(\left(a^3+b^3\ge2\right)\)
\(\Leftrightarrow\left(ab\right)^2\left(a+b\right)\ge2\). Right because \(ab=1;a+b\ge2\)
Done !!
-
See question detail
b)\(A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5+....+27\cdot28\cdot29\cdot30\)
\(5A=1\cdot2\cdot3\cdot4\cdot5+2\cdot3\cdot4\cdot5\cdot\left(6-1\right)+....+27\cdot28\cdot29\cdot30\cdot\left(31-26\right)\)
\(5A=1\cdot2\cdot3\cdot4\cdot5+2\cdot3\cdot4\cdot5\cdot6-1\cdot2\cdot3\cdot4\cdot5+....+27\cdot28\cdot29\cdot30\cdot31-26\cdot27\cdot28\cdot29\cdot30\)
\(5A=27\cdot28\cdot29\cdot30\cdot31\Rightarrow A=\dfrac{27\cdot28\cdot29\cdot30\cdot31}{5}=4077864\)
-
See question detail
WaTerFall in Dictionary haven't word "Đặt"
-
See question detail
1,\(x\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
2,\(5x\left(x-2\right)-x+2=0\)
\(\Leftrightarrow5x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\x-2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=2\end{matrix}\right.\)
-
See question detail
File downloaded from computer without link
-
See question detail
We have 4 even numbers and 4 odd numbers, and :
- Odd plus odd is even
- Odd plus even is odd
There are 8 out of 14 pairs that are odd plus even. Therefore, the probability of an odd sum \(\dfrac{8}{14}=0,57\) or \(57\%\)
-
See question detail
My try: WLOG \(a\ge b\ge c\) hence we have: \(a^{m-n}\ge b^{m-n}\ge c^{m-n}\)
\(\Rightarrow\dfrac{a^n}{b^n+c^n}\ge\dfrac{b^n}{c^n+a^n}\ge\dfrac{c^n}{a^n+b^n}\)
By Chebyshev's inequality we have:
\(\text{∑}\dfrac{a^m}{b^n+c^n}=\text{∑}a^{m-n}\cdot\dfrac{a^n}{b^n+c^n}\)
\(\ge\dfrac{a^{m-n}+b^{m-n}+c^{m-n}}{3}\cdot\text{∑}\dfrac{a^n}{b^n+c^n}\)
\(\ge\text{∑}\dfrac{a^{m-n}+b^{m-n}+c^{m-n}}{2}\)
We're done when \(a=b=c\)
P/s: This's discuss not A4 (Auto Ask Auto Answer)
-
See question detail
a)\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x^2+5xy+6y^2\right)\left(x^2+5xy+4y^2\right)+y^4\)
Let \(x^2+5xy=a;y^2=b\) we have;
\(=\left(a+6b\right)\left(a+4b\right)+b^2\)
\(=a^2+10ab+24b^2+b^2\)
\(=a^2+10ab+25b^2=\left(a+5b\right)^2\)
\(=\left(x^2+5xy+5y^2\right)^2\)
b)\(B=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+3x+2\right)\left(x^2+3x\right)+1\)
Let \(a=x^2+3x\) we have:
\(=a\left(a+2\right)+1=a^2+2a+1\)
\(=\left(a+1\right)^2=\left(x^2+3x+1\right)^2\)
Done !!
-
See question detail
a)\(A=x^2+3x+7\)
\(=x^2+3x+\dfrac{9}{4}+\dfrac{19}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
When \(x=-\dfrac{3}{2}\)
-
See question detail
Từ \(a+b+c=0\Rightarrow b+c=-a\)
\(\Rightarrow\left(b+c\right)^2=\left(-a\right)^2\Rightarrow b^2+2bc+c^2=a^2\)
\(\Rightarrow b^2+c^2-a^2=-2bc\)\(\Rightarrow\left(b^2+c^2-a^2\right)^2=\left(-2bc\right)^2\)
\(\Rightarrow b^4+c^4+a^4+2b^2c^2-2a^2b^2-2a^2c^2=4b^2c^2\)
\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)
\(\Rightarrow2(a^4+b^4+c^4)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\)
\(\Rightarrow2(a^4+b^4+c^4)=(a^2+b^2+c^2)^2\)
-
See question detail
a,b>0; c<0 ? or c=0 ? seem to have a typo
-
See question detail
\(\left|x-1\right|+\left|2x-4\right|=3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(2x-4\right)^2}=3\)
\(\Leftrightarrow\sqrt{x^2-2x+1}+\sqrt{4x^2-16x+16}=3\)
\(\Leftrightarrow\sqrt{x^2-2x+1}-\left(\dfrac{2}{3}x-\dfrac{1}{9}\right)+\sqrt{4x^2-16x+16}-\left(-\dfrac{2}{3}x+\dfrac{28}{9}\right)=0\)
\(\Leftrightarrow\dfrac{x^2-2x+1-\left(\dfrac{2}{3}x-\dfrac{1}{9}\right)^2}{\sqrt{x^2-2x+1}+\dfrac{2}{3}x-\dfrac{1}{9}}+\dfrac{4x^2-16x+16-\left(-\dfrac{2}{3}x+\dfrac{28}{9}\right)^2}{\sqrt{4x^2-16x+16}+\left(-\dfrac{2}{3}x+\dfrac{28}{9}\right)}=0\)
\(\Leftrightarrow\dfrac{\dfrac{45x^2-150x+80}{81}}{\sqrt{x^2-2x+1}+\dfrac{2}{3}x-\dfrac{1}{9}}+\dfrac{\dfrac{288x^2-960x+512}{81}}{\sqrt{4x^2-16x+16}+\left(-\dfrac{2}{3}x+\dfrac{28}{9}\right)}=0\)
\(\Leftrightarrow\dfrac{\dfrac{5\left(3x-8\right)\left(3x-2\right)}{81}}{\sqrt{x^2-2x+1}+\dfrac{2}{3}x-\dfrac{1}{9}}+\dfrac{\dfrac{32\left(3x-8\right)\left(3x-2\right)}{81}}{\sqrt{4x^2-16x+16}+\left(-\dfrac{2}{3}x+\dfrac{28}{9}\right)}=0\)
\(\Leftrightarrow\dfrac{\left(3x-8\right)\left(3x-2\right)}{81}\left(\dfrac{5}{\sqrt{x^2-2x+1}+\dfrac{2}{3}x-\dfrac{1}{9}}+\dfrac{32}{\sqrt{4x^2-16x+16}-\dfrac{2}{3}x+\dfrac{28}{9}}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-8=0\\3x-2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
-
See question detail
\(x-x^2+x^3-x^4\)
\(=\left(x^3-x^4\right)+\left(x-x^2\right)\)
\(=x^2\left(x-x^2\right)+\left(x-x^2\right)\)
\(=\left(x-x^2\right)\left(x^2+1\right)\)
\(=\left(1-x\right)x\left(x^2+1\right)\)
-
See question detail
a)\(x^2+3x+7\)
\(=x^2+3x+\dfrac{9}{4}+\dfrac{19}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
When \(x=-\dfrac{3}{2}\)
b)\(2x^2+9y^2-6xy-6x-12y+2004\)
\(=\left(x^2-6xy+4x+9y^2-12y+4\right)+\left(x^2-10x+25\right)+1975\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\)
When \(x=5;y=\dfrac{7}{3}\)
-
See question detail
surf before ask Câu hỏi của Mai Nguyễn Bảo Ngọc - Toán lớp 8 | Học trực tuyến
-
See question detail
From \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+3ab(a+b)+b^3+c^3-3abc-3ab(a+b)=0\)
\(\Rightarrow (a+b)^3+c^3-3ab(a+b+c)=0\)
\(\Rightarrow (a+b+c)(a^2+2ab+b^2-ab-ac+c^2)-3ab(a+b+c)=0\)
\(\Rightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0\)
It's right because \(a+b+c=0\)
-
See question detail
I don't care. You need create a separate list to be somewhere in the web. This is spam, you're spammer
-
See question detail
a)\(\left(x-1\right)\left(3-x\right)>0\)
\(\Leftrightarrow-\left(x-1\right)\left(x-3\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)< 0\)
\(\Rightarrow\)\(x-1;x-3\) are the numbers opposite the sign
We have: \(x-1>x-3\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}x-1>0\\x-3< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>1\\x< 3\end{matrix}\right.\)
b)\(xy=x+y\)
\(\Rightarrow xy-x-y+1=1\)
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=1\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(;\left\{{}\begin{matrix}x-1=-1\\y-1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=y=2\\x=y=0\end{matrix}\right.\)