-
See question detail
We have :
2a+b+c+da=a+2b+c+db=a+b+2c+dc=a+b+c+2dd2a+b+c+da=a+2b+c+db=a+b+2c+dc=a+b+c+2dd
⇒2a+b+c+da−1=a+2b+c+db−1=a+b+2c+dc−1=a+b+c+2dd−1⇒2a+b+c+da−1=a+2b+c+db−1=a+b+2c+dc−1=a+b+c+2dd−1
⇒a+b+c+da=a+b+c+db=a+b+c+dc=a+b+c+dd⇒a+b+c+da=a+b+c+db=a+b+c+dc=a+b+c+dd
+> If a + b + c + d ≠0≠0
=> a = b = c = d (Because the same of namerator)
=> M = 1 + 1 + 1 + 1 = 4
+> If a + b + c + d = 0
=> a + b = -(c + d)
b + c = -(a + d)
c + d = -(a + b)
a + d = -(b + c)
Change this into M , we have :
M=a+bc+d+b+cd+a+c+da+b+a+db+cM=a+bc+d+b+cd+a+c+da+b+a+db+c
M=−(c+d)c+d+−(a+d)a+d+−(a+b)a+b+−(b+c)b+c=(−1)+(−1)+(−1)+(−1)=−4M=−(c+d)c+d+−(a+d)a+d+−(a+b)a+b+−(b+c)b+c=(−1)+(−1)+(−1)+(−1)=−4
So M = 4 and M = -4
-
See question detail
We have :
2a+b+c+da=a+2b+c+db=a+b+2c+dc=a+b+c+2dd2a+b+c+da=a+2b+c+db=a+b+2c+dc=a+b+c+2dd
⇒2a+b+c+da−1=a+2b+c+db−1=a+b+2c+dc−1=a+b+c+2dd−1⇒2a+b+c+da−1=a+2b+c+db−1=a+b+2c+dc−1=a+b+c+2dd−1
⇒a+b+c+da=a+b+c+db=a+b+c+dc=a+b+c+dd⇒a+b+c+da=a+b+c+db=a+b+c+dc=a+b+c+dd
+> If a + b + c + d ≠0≠0
=> a = b = c = d (Because the same of namerator)
=> M = 1 + 1 + 1 + 1 = 4
+> If a + b + c + d = 0
=> a + b = -(c + d)
b + c = -(a + d)
c + d = -(a + b)
a + d = -(b + c)
Change this into M , we have :
M=a+bc+d+b+cd+a+c+da+b+a+db+cM=a+bc+d+b+cd+a+c+da+b+a+db+c
M=−(c+d)c+d+−(a+d)a+d+−(a+b)a+b+−(b+c)b+c=(−1)+(−1)+(−1)+(−1)=−4M=−(c+d)c+d+−(a+d)a+d+−(a+b)a+b+−(b+c)b+c=(−1)+(−1)+(−1)+(−1)=−4
So M = 4 and M = -4