-
See question detail
The number of terms is:
(200 - 1): 1 + 1 = 200 (number)We have:
From 1 to 9 have a two digit number
From 10 to 100 has 19 digits two
From 101 to 200 there are 20 digits two
So 1 to 200 are: 1 + 19 + 20 = 40 digits 2
=> Yes: 200 - 40 = 160 with no 2 digitsAnswer: 160
-
See question detail
số kẹo còn lại trong hộp là:100-4=96(viên)
số bạn bè có là:96:24=4(bạn)
ĐS:4 bạn bè
-
See question detail
123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14
-
See question detail
Có:2=12+12
5=22+12
29=52+22
............................
Tương tự: số thứ 6=292+52=866
=>Số thứ 7=8662+292=750797
-
See question detail
The number of pencils Mary has is:
9 x 5 = 45(pencils)
The number of pencils John and Mary have is:
45 + 16 = 61(pencils)
Answer: 61 pencils
-
See question detail
Given a sum : 2 + 4 + 6 + ... + 2k
The number of terms is : 2k−22+1=k2k−22+1=k ( terms )
So, the result of this sum is : k.(2k+2)2=k.(k+1)k.(2k+2)2=k.(k+1)
Example : 2 + 4 + 6 = 2 + 4 + 2.3 ; so k = 3; then 2 + 4 +6 = k.(k+1)=3.4 .
-
See question detail
ab+¯¯¯¯¯ba=10a+b+10b+a=11(a+b)=n2ab¯+ba¯=10a+b+10b+a=11(a+b)=n2
⇒⇒Put a+b=11.k2a+b=11.k2
We have 0<a+b≤180<a+b≤18
⇒a+b=11=2+9=3+8=4+7=5+6⇒a+b=11=2+9=3+8=4+7=5+6
So, (a;b)∈{(2;9);(9;2);(3;8);(8;3);(7;4);(4;7);(5;6);(6;5)}
-
See question detail
(a) Assume that the square number 16 = 42 is equal ton3n3,so n = 48
(b) Assume that the cubic number 27 = 33 is equal ton5n5,so n = 135
1 Selected by MathYou
-
See question detail
5n8 is divisible by 9 => (5 + n + 8) ⋮⋮ 9 means (13 + n) ⋮⋮ 9.
=> n = 5.
=> 3m9 = 558 - 189 = 369 => m = 6.
So, m + n = 5 + 6 = 11.
-
See question detail
a) There are : 7 x 7 x 6 x 5 = 1470 numbers
b) There are : 4 x 3 x 2 x 1 = 24 old numbers
-
See question detail
Nhiều người trả lời vãi chật cả chỗ
-
See question detail
Let a,b,c be the number of the correctly answered questions , unanswered questions , incorrectly answered questions of a participant respectively
Then the participant's total score is 5a + b - c with a + b + c = 30
If a is odd,then 5a and b + c are odd,so b - c is odd and 5a + b - c is even
If a is even,then 5a and b + c are even,so b - c is even and 5a + b - c is even
From 2 cases,we know that the total score of all participants is always an even number
-
See question detail
Because the lowest common multiple of a and b is 50 . So all possible values of a and b is :
(a;b) = {1 ; 2 ; 5 ; 10 ; 25 ; 50}
-
See question detail
20 = 2^2 x 5
20 = 4.5
The smallest number such that the ptoduct of all it is digit is 20 is : 45
Good ! ^^
-
See question detail
b3 = 3375 = 153 => b = 15 => a = 13 ; c = 17 => ac = 221
-
See question detail
b3 = 3375=> b = 15 => a = 13 ; c = 17 => ac = 221
-
See question detail
There are 162 numbers from 1 to 200 do not have the digit 2
1
-
See question detail
Tom : 20 candies
Tony : 80 candies
-
See question detail
The sum of the equal parts is:
3 + 8 = 11 (part)
Baby number is:
198: 11 x 3 = 54
Large numbers are:
198 - 54 = 144
Answer: SB: 54
SL: 144 -
See question detail
Oh,this Problem is very difficult