MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 37 )
  • See question detail

    Your title is wrong. Here's a example: \(abcd=1.\left(-1\right).1.\left(-1\right)=1\)but          \(a^2+b^2+c^2+d^2+ab+cd=1+1+1+1+\left(-1\right)+\left(-1\right)=2< 6\)

  • See question detail

    Sorry, \(\dfrac{a+b}{2}.\dfrac{b+c}{2}.\dfrac{c+d}{2}.\dfrac{d+e}{2}.\dfrac{e+a}{2}\ge\dfrac{a+b+c}{3}.\dfrac{b+c+d}{3}.\dfrac{c+d+e}{3}.\dfrac{d+e+a}{3}.\dfrac{e+a+b}{3}\)

  • See question detail

    We have: \(\left(n^2+n-1\right)^2-1=\left(n^2+n\right)\left(n^2+n-2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\left(n\in Z\right)\)                                                                                                                         (product of four consecutive numbers)

    So ...

  • See question detail

    Lê Anh Duy is wrong.

    \(6!=1.2.3.4.5.6=9.1.2.4.5.2⋮9\)

    So there are: 92+1=93(factorials)

  • See question detail

    Put : \(f\left(0,n\right)=n+1\)(1)

            \(f\left(k,0\right)=f\left(k-1,1\right)\)(2)

            \(f\left(k+1,n+1\right)=f\left(k,f\left(k+1,n\right)\right)\)(3)

    After that we have:

    From (3) \(\Rightarrow f\left(2,2\right)=f\left(1,f\left(2,1\right)\right)=f\left(1,f\left(1,f\left(1,1\right)\right)\right)=f\left(1,f\left(1,f\left(0,f\left(1,0\right)\right)\right)\right)\)

    From (2) \(\Rightarrow f\left(1,f\left(1,f\left(0,f\left(1,0\right)\right)\right)\right)=f\left(1,f\left(1,f\left(0,f\left(0,1\right)\right)\right)\right)\)

    From (1) \(\Rightarrow f\left(1,f\left(1,f\left(0,f\left(0,1\right)\right)\right)\right)=f\left(1,f\left(1,f\left(0,2\right)\right)\right)=f\left(1,f\left(1,3\right)\right)\)

    From (3) \(\Rightarrow f\left(1,f\left(1,3\right)\right)=f\left(1,f\left(0,f\left(1,2\right)\right)\right)=f\left(1,f\left(0,f\left(0,f\left(1,1\right)\right)\right)\right)=f\left(1,f\left(0,f\left(0,f\left(0,f\left(1,0\right)\right)\right)\right)\right)\)

    From (2) \(\Rightarrow f\left(1,f\left(0,f\left(0,f\left(0,f\left(1,0\right)\right)\right)\right)\right)=f\left(1,f\left(0,f\left(0,f\left(0,f\left(0,1\right)\right)\right)\right)\right)\)

    From (1) \(\Rightarrow f\left(1,f\left(0,f\left(0,f\left(0,f\left(0,1\right)\right)\right)\right)\right)=f\left(1,f\left(0,f\left(0,f\left(0,2\right)\right)\right)\right)=f\left(1,f\left(0,f\left(0,3\right)\right)\right)=f\left(1,f\left(0,4\right)\right)=f\left(1,5\right)\)

    From (3) \(\Rightarrow f\left(1,5\right)=f\left(0,f\left(1,4\right)\right)=f\left(0,f\left(0,f\left(1,3\right)\right)\right)=f\left(0,f\left(0,f\left(0,f\left(1,2\right)\right)\right)\right)=f\left(0,f\left(0,f\left(0,f\left(0,f\left(1,1\right)\right)\right)\right)\right)=f\left(0,f\left(0,f\left(0,f\left(0,f\left(0,f\left(1,0\right)\right)\right)\right)\right)\right)\)

    From (2) \(\Rightarrow f\left(0,f\left(0,f\left(0,f\left(0,f\left(0,f\left(1,0\right)\right)\right)\right)\right)\right)=f\left(0,f\left(0,f\left(0,f\left(0,f\left(0,f\left(0,1\right)\right)\right)\right)\right)\right)\)

    From (1) \(\Rightarrow f\left(0,f\left(0,f\left(0,f\left(0,f\left(0,f\left(0,1\right)\right)\right)\right)\right)\right)=f\left(0,f\left(0,f\left(0,f\left(0,f\left(0,2\right)\right)\right)\right)\right)=f\left(0,f\left(0,f\left(0,f\left(0,3\right)\right)\right)\right)=f\left(0,f\left(0,f\left(0,4\right)\right)\right)=f\left(0,f\left(0,5\right)\right)=f\left(0,6\right)=7\)

    So f(2,2)=7

  • See question detail

    \(12=\left(6:3\right)!.5+\left(5-3\right)\)

    \(12=3.3+3\)

    \(12=\dfrac{6.5}{3}+5-3\)

    \(12=\dfrac{5!}{6}-5-3\)

  • See question detail

    \(12=3!+6\)

    \(12=3\sqrt{5.3+6-5}\)

    \(12=\dfrac{6.6}{3}\)

    \(12=\dfrac{6!}{3!}:\left(5+5\right)\)

  • See question detail

    Change the number 6 in 62, then we have: \(2^6-63=1\left(64-63=1\right)\)

  • See question detail

    The sum of the digits of m.n is: 8.2014+7+1.2014+2=18135.

  • See question detail

    \(m.n=\left(999...99\right).\left(888...88\right)\)

                    2015            2015

             \(=\left(888...88\right).\left(1000...00-1\right)\)

                    2015             2016

            \(=\left(888...88000..00\right)-\left(888...88\right)\)

                         4030                      2015

            \(=888...887111...112\)

                   2014         2014

  • See question detail

    We have: \(S=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)

                      \(>\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\right)\)

                                            50                                                      50

                      \(=\dfrac{50}{150}+\dfrac{50}{200}=\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)

    So \(S>\dfrac{7}{12}\).

  • See question detail

    We can easily prove that P>0.

    We have: \(P=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}\)

                                                                     \(=1-\dfrac{1}{2013}< 1\)

    \(\Rightarrow0< P< 1\)

    So P isn't a integer.

  • See question detail

    We have: \(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^{\text{4}}\)

                        \(=\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]+y^4\)

                        \(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

                        \(=\left[\left(x^2+5xy+5y^2\right)-y^2\right]\left[\left(x^2+5xy+5y^2\right)+y^2\right]+y^4\)

                        \(=\left(x^2+5xy+5y^2\right)^2-y^4+y^4\)

                        \(=\left(x^2+5xy+5y^2\right)^2\)

    So A is a square number.

  • See question detail

    The difference between the loud rock concert and the normal conversation is 120-60=60 dB. It's 3 times of 20 dB. Because every increase of 20 dB corresponds to sound becoming 10 times as loud, the rock concert must be 10 × 10 × 10 = 1000 times as loud as the normal conversation.

  • See question detail

    In each day, Gaylon uses 8 digits. We have: 2018:8 = 252 and the remainder is 2. The 253rd day of the year is in September, so Gaylon writes the first two digits of the number is 09 in the month of September. The 2018th digit he writes down is 9.

  • See question detail

    April has 30 days.

    => Zeus needs to throw: 30.12=360 (lightning bolts) in April.

    In the first week of April, he has thrown: 15.7=105 (lightning bolts)

    In the next 30-7=23 days, Zeus needs to throw: 360-105=255 (lightning bolts)

    So the average is: 255:23=11.08\(\approx\)11 (lightning bolts per day).

  • See question detail

    Dao Trong Luan is wrong.

    When \(0< a,b,c< 1\), \(\sqrt{a}>a;\sqrt{b}>b;\sqrt{c}>c\)

    Ex: \(\sqrt{0.36}=0.6>0.36\)

  • See question detail

    The biggest sum she can get is 24 (19:59)

  • See question detail

    The smallest positive integer divisible by 2, 3 and 4 is 12.

  • See question detail

    The number of ways: \(\dfrac{9!}{5!.4!}=126\) (ways)

  • 1
  • 2
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM