-
See question detail
Your title is wrong. Here's a example: \(abcd=1.\left(-1\right).1.\left(-1\right)=1\)but \(a^2+b^2+c^2+d^2+ab+cd=1+1+1+1+\left(-1\right)+\left(-1\right)=2< 6\)
-
See question detail
Sorry, \(\dfrac{a+b}{2}.\dfrac{b+c}{2}.\dfrac{c+d}{2}.\dfrac{d+e}{2}.\dfrac{e+a}{2}\ge\dfrac{a+b+c}{3}.\dfrac{b+c+d}{3}.\dfrac{c+d+e}{3}.\dfrac{d+e+a}{3}.\dfrac{e+a+b}{3}\)
-
See question detail
We have: \(\left(n^2+n-1\right)^2-1=\left(n^2+n\right)\left(n^2+n-2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\left(n\in Z\right)\) (product of four consecutive numbers)
So ...
-
See question detail
Lê Anh Duy is wrong.
\(6!=1.2.3.4.5.6=9.1.2.4.5.2⋮9\)
So there are: 92+1=93(factorials)
-
See question detail
Put : \(f\left(0,n\right)=n+1\)(1)
\(f\left(k,0\right)=f\left(k-1,1\right)\)(2)
\(f\left(k+1,n+1\right)=f\left(k,f\left(k+1,n\right)\right)\)(3)
After that we have:
From (3) \(\Rightarrow f\left(2,2\right)=f\left(1,f\left(2,1\right)\right)=f\left(1,f\left(1,f\left(1,1\right)\right)\right)=f\left(1,f\left(1,f\left(0,f\left(1,0\right)\right)\right)\right)\)
From (2) \(\Rightarrow f\left(1,f\left(1,f\left(0,f\left(1,0\right)\right)\right)\right)=f\left(1,f\left(1,f\left(0,f\left(0,1\right)\right)\right)\right)\)
From (1) \(\Rightarrow f\left(1,f\left(1,f\left(0,f\left(0,1\right)\right)\right)\right)=f\left(1,f\left(1,f\left(0,2\right)\right)\right)=f\left(1,f\left(1,3\right)\right)\)
From (3) \(\Rightarrow f\left(1,f\left(1,3\right)\right)=f\left(1,f\left(0,f\left(1,2\right)\right)\right)=f\left(1,f\left(0,f\left(0,f\left(1,1\right)\right)\right)\right)=f\left(1,f\left(0,f\left(0,f\left(0,f\left(1,0\right)\right)\right)\right)\right)\)
From (2) \(\Rightarrow f\left(1,f\left(0,f\left(0,f\left(0,f\left(1,0\right)\right)\right)\right)\right)=f\left(1,f\left(0,f\left(0,f\left(0,f\left(0,1\right)\right)\right)\right)\right)\)
From (1) \(\Rightarrow f\left(1,f\left(0,f\left(0,f\left(0,f\left(0,1\right)\right)\right)\right)\right)=f\left(1,f\left(0,f\left(0,f\left(0,2\right)\right)\right)\right)=f\left(1,f\left(0,f\left(0,3\right)\right)\right)=f\left(1,f\left(0,4\right)\right)=f\left(1,5\right)\)
From (3) \(\Rightarrow f\left(1,5\right)=f\left(0,f\left(1,4\right)\right)=f\left(0,f\left(0,f\left(1,3\right)\right)\right)=f\left(0,f\left(0,f\left(0,f\left(1,2\right)\right)\right)\right)=f\left(0,f\left(0,f\left(0,f\left(0,f\left(1,1\right)\right)\right)\right)\right)=f\left(0,f\left(0,f\left(0,f\left(0,f\left(0,f\left(1,0\right)\right)\right)\right)\right)\right)\)
From (2) \(\Rightarrow f\left(0,f\left(0,f\left(0,f\left(0,f\left(0,f\left(1,0\right)\right)\right)\right)\right)\right)=f\left(0,f\left(0,f\left(0,f\left(0,f\left(0,f\left(0,1\right)\right)\right)\right)\right)\right)\)
From (1) \(\Rightarrow f\left(0,f\left(0,f\left(0,f\left(0,f\left(0,f\left(0,1\right)\right)\right)\right)\right)\right)=f\left(0,f\left(0,f\left(0,f\left(0,f\left(0,2\right)\right)\right)\right)\right)=f\left(0,f\left(0,f\left(0,f\left(0,3\right)\right)\right)\right)=f\left(0,f\left(0,f\left(0,4\right)\right)\right)=f\left(0,f\left(0,5\right)\right)=f\left(0,6\right)=7\)
So f(2,2)=7
-
See question detail
\(12=\left(6:3\right)!.5+\left(5-3\right)\)
\(12=3.3+3\)
\(12=\dfrac{6.5}{3}+5-3\)
\(12=\dfrac{5!}{6}-5-3\)
-
See question detail
\(12=3!+6\)
\(12=3\sqrt{5.3+6-5}\)
\(12=\dfrac{6.6}{3}\)
\(12=\dfrac{6!}{3!}:\left(5+5\right)\)
-
See question detail
Change the number 6 in 62, then we have: \(2^6-63=1\left(64-63=1\right)\)
-
See question detail
The sum of the digits of m.n is: 8.2014+7+1.2014+2=18135.
-
See question detail
\(m.n=\left(999...99\right).\left(888...88\right)\)
2015 2015
\(=\left(888...88\right).\left(1000...00-1\right)\)
2015 2016
\(=\left(888...88000..00\right)-\left(888...88\right)\)
4030 2015
\(=888...887111...112\)
2014 2014
-
See question detail
We have: \(S=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
\(>\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\right)\)
50 50
\(=\dfrac{50}{150}+\dfrac{50}{200}=\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
So \(S>\dfrac{7}{12}\).
-
See question detail
We can easily prove that P>0.
We have: \(P=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}\)
\(=1-\dfrac{1}{2013}< 1\)
\(\Rightarrow0< P< 1\)
So P isn't a integer.
-
See question detail
We have: \(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^{\text{4}}\)
\(=\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
\(=\left[\left(x^2+5xy+5y^2\right)-y^2\right]\left[\left(x^2+5xy+5y^2\right)+y^2\right]+y^4\)
\(=\left(x^2+5xy+5y^2\right)^2-y^4+y^4\)
\(=\left(x^2+5xy+5y^2\right)^2\)
So A is a square number.
-
See question detail
The difference between the loud rock concert and the normal conversation is 120-60=60 dB. It's 3 times of 20 dB. Because every increase of 20 dB corresponds to sound becoming 10 times as loud, the rock concert must be 10 × 10 × 10 = 1000 times as loud as the normal conversation.
-
See question detail
In each day, Gaylon uses 8 digits. We have: 2018:8 = 252 and the remainder is 2. The 253rd day of the year is in September, so Gaylon writes the first two digits of the number is 09 in the month of September. The 2018th digit he writes down is 9.
-
See question detail
April has 30 days.
=> Zeus needs to throw: 30.12=360 (lightning bolts) in April.
In the first week of April, he has thrown: 15.7=105 (lightning bolts)
In the next 30-7=23 days, Zeus needs to throw: 360-105=255 (lightning bolts)
So the average is: 255:23=11.08\(\approx\)11 (lightning bolts per day).
-
See question detail
Dao Trong Luan is wrong.
When \(0< a,b,c< 1\), \(\sqrt{a}>a;\sqrt{b}>b;\sqrt{c}>c\)
Ex: \(\sqrt{0.36}=0.6>0.36\)
-
See question detail
The biggest sum she can get is 24 (19:59)
-
See question detail
The smallest positive integer divisible by 2, 3 and 4 is 12.
-
See question detail
The number of ways: \(\dfrac{9!}{5!.4!}=126\) (ways)
- View more →